ext-boost/boost/safe_numerics/utility.hpp

281 lines
8 KiB
C++
Raw Normal View History

#ifndef BOOST_NUMERIC_UTILITY_HPP
#define BOOST_NUMERIC_UTILITY_HPP
// Copyright (c) 2015 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstdint> // intmax_t, uintmax_t, uint8_t, ...
#include <algorithm>
#include <type_traits> // conditional
#include <limits>
#include <cassert>
#include <utility> // pair
#include <boost/integer.hpp> // (u)int_t<>::least, exact
namespace boost {
namespace safe_numerics {
namespace utility {
///////////////////////////////////////////////////////////////////////////////
// used for debugging
// provokes warning message with names of type T
// usage - print_types<T, ...>;
// see https://cukic.co/2019/02/19/tmp-testing-and-debugging-templates
/*
template<typename Tx>
using print_type = typename Tx::error_message;
*/
template <typename... Ts>
struct [[deprecated]] print_types {};
// display value of constexpr during compilation
// usage print_value(N) pn;
template<int N>
struct print_value
{
enum test : char {
value = N < 0 ? N - 256 : N + 256
};
};
#if 0
// static warning - same as static_assert but doesn't
// stop compilation.
template <typename T>
struct static_test{};
template <>
struct static_test<std::false_type>{
[[deprecated]] static_test(){}
};
template<typename T>
constexpr void static_warning(const T){
//using x = static_test<T>;
const static_test<T> x;
}
#endif
/*
// can be called by constexpr to produce a compile time
// trap of parameter passed is false.
// usage constexpr_assert(bool)
constexpr int constexpr_assert(const bool tf){
return 1 / tf;
}
*/
///////////////////////////////////////////////////////////////////////////////
// return an integral constant equal to the the number of bits
// held by some integer type (including the sign bit)
template<typename T>
using bits_type = std::integral_constant<
int,
std::numeric_limits<T>::digits
+ (std::numeric_limits<T>::is_signed ? 1 : 0)
>;
/*
From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
Find the log base 2 of an integer with a lookup table
static const char LogTable256[256] =
{
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
unsigned int v; // 32-bit word to find the log of
unsigned r; // r will be lg(v)
register unsigned int t, tt; // temporaries
if (tt = v >> 16)
{
r = (t = tt >> 8) ? 24 + LogTable256[t] : 16 + LogTable256[tt];
}
else
{
r = (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
}
The lookup table method takes only about 7 operations to find the log of a 32-bit value.
If extended for 64-bit quantities, it would take roughly 9 operations. Another operation
can be trimmed off by using four tables, with the possible additions incorporated into each.
Using int table elements may be faster, depending on your architecture.
*/
namespace ilog2_detail {
// I've "improved" the above and recast as C++ code which depends upon
// the optimizer to minimize the operations. This should result in
// nine operations to calculate the position of the highest order
// bit in a 64 bit number. RR
constexpr static unsigned int ilog2(const boost::uint_t<8>::exact & t){
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
const char LogTable256[256] = {
static_cast<const char>(-1), 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
return LogTable256[t];
}
constexpr static unsigned int ilog2(const boost::uint_t<16>::exact & t){
const boost::uint_t<8>::exact upper_half = (t >> 8);
return upper_half == 0
? ilog2(static_cast<boost::uint_t<8>::exact>(t))
: 8 + ilog2(upper_half);
}
constexpr static unsigned int ilog2(const boost::uint_t<32>::exact & t){
const boost::uint_t<16>::exact upper_half = (t >> 16);
return upper_half == 0
? ilog2(static_cast<boost::uint_t<16>::exact>(t))
: 16 + ilog2(upper_half);
}
constexpr static unsigned int ilog2(const boost::uint_t<64>::exact & t){
const boost::uint_t<32>::exact upper_half = (t >> 32);
return upper_half == 0
? ilog2(static_cast<boost::uint_t<32>::exact>(t))
: 32 + ilog2(upper_half);
}
} // ilog2_detail
template<typename T>
constexpr unsigned int ilog2(const T & t){
// log not defined for negative numbers
// assert(t > 0);
if(t == 0)
return 0;
return ilog2_detail::ilog2(
static_cast<
typename boost::uint_t<
bits_type<T>::value
>::least
>(t)
);
}
// the number of bits required to render the value in x
// including sign bit
template<typename T>
constexpr unsigned int significant_bits(const T & t){
return 1 + ((t < 0) ? ilog2(~t) : ilog2(t));
}
/*
// give the value t, return the number which corresponds
// to all 1's which is higher than that number
template<typename T>
constexpr unsigned int bits_value(const T & t){
const unsigned int sb = significant_bits(t);
const unsigned int sb_max = significant_bits(std::numeric_limits<T>::max());
return sb < sb_max ? ((sb << 1) - 1) : std::numeric_limits<T>::max();
}
*/
///////////////////////////////////////////////////////////////////////////////
// meta functions returning types
// If we use std::max in here we get internal compiler errors
// with MSVC (tested VC2017) ...
// Notes from https://en.cppreference.com/w/cpp/algorithm/max
// Capturing the result of std::max by reference if one of the parameters
// is rvalue produces a dangling reference if that parameter is returned.
template <class T>
// turns out this problem crashes all versions of gcc compilers. So
// make sure we return by value
//constexpr const T & max(
constexpr T max(
const T & lhs,
const T & rhs
){
return lhs > rhs ? lhs : rhs;
}
// given a signed range, return type required to hold all the values
// in the range
template<
std::intmax_t Min,
std::intmax_t Max
>
using signed_stored_type = typename boost::int_t<
max(
significant_bits(Min),
significant_bits(Max)
) + 1
>::least ;
// given an unsigned range, return type required to hold all the values
// in the range
template<
std::uintmax_t Min,
std::uintmax_t Max
>
// unsigned range
using unsigned_stored_type = typename boost::uint_t<
significant_bits(Max)
>::least;
///////////////////////////////////////////////////////////////////////////////
// constexpr functions
// need our own version because official version
// a) is not constexpr
// b) is not guarenteed to handle non-assignable types
template<typename T>
constexpr std::pair<T, T>
minmax(const std::initializer_list<T> l){
assert(l.size() > 0);
const T * minimum = l.begin();
const T * maximum = l.begin();
for(const T * i = l.begin(); i != l.end(); ++i){
if(*i < * minimum)
minimum = i;
else
if(* maximum < *i)
maximum = i;
}
return std::pair<T, T>{* minimum, * maximum};
}
// for any given t
// a) figure number of significant bits
// b) return a value with all significant bits set
// so for example:
// 3 == round_out(2) because
// 2 == 10 and 3 == 11
template<typename T>
constexpr T round_out(const T & t){
if(t >= 0){
const std::uint8_t sb = utility::significant_bits(t);
return (sb < sizeof(T) * 8)
? ((T)1 << sb) - 1
: std::numeric_limits<T>::max();
}
else{
const std::uint8_t sb = utility::significant_bits(~t);
return (sb < sizeof(T) * 8)
? ~(((T)1 << sb) - 1)
: std::numeric_limits<T>::min();
}
}
} // utility
} // safe_numerics
} // boost
#endif // BOOST_NUMERIC_UTILITY_HPP