ext-boost/boost/container/detail/flat_tree.hpp

1022 lines
36 KiB
C++
Raw Normal View History

////////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
////////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_FLAT_TREE_HPP
#define BOOST_CONTAINER_FLAT_TREE_HPP
#if defined(_MSC_VER)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <algorithm>
#include <functional>
#include <utility>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/pair.hpp>
#include <boost/container/vector.hpp>
#include <boost/container/detail/value_init.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/allocator_traits.hpp>
#ifdef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
#include <boost/intrusive/pointer_traits.hpp>
#endif
#include <boost/aligned_storage.hpp>
#include <boost/move/make_unique.hpp>
namespace boost {
namespace container {
namespace container_detail {
template<class Compare, class Value, class KeyOfValue>
class flat_tree_value_compare
: private Compare
{
typedef Value first_argument_type;
typedef Value second_argument_type;
typedef bool return_type;
public:
flat_tree_value_compare()
: Compare()
{}
flat_tree_value_compare(const Compare &pred)
: Compare(pred)
{}
bool operator()(const Value& lhs, const Value& rhs) const
{
KeyOfValue key_extract;
return Compare::operator()(key_extract(lhs), key_extract(rhs));
}
const Compare &get_comp() const
{ return *this; }
Compare &get_comp()
{ return *this; }
};
template<class Pointer>
struct get_flat_tree_iterators
{
#ifdef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
typedef Pointer iterator;
typedef typename boost::intrusive::
pointer_traits<Pointer>::element_type iterator_element_type;
typedef typename boost::intrusive::
pointer_traits<Pointer>:: template
rebind_pointer<const iterator_element_type>::type const_iterator;
#else //BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
typedef typename boost::container::container_detail::
vec_iterator<Pointer, false> iterator;
typedef typename boost::container::container_detail::
vec_iterator<Pointer, true > const_iterator;
#endif //BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
typedef boost::container::container_detail::
reverse_iterator<iterator> reverse_iterator;
typedef boost::container::container_detail::
reverse_iterator<const_iterator> const_reverse_iterator;
};
template <class Key, class Value, class KeyOfValue,
class Compare, class A>
class flat_tree
{
typedef boost::container::vector<Value, A> vector_t;
typedef A allocator_t;
public:
typedef flat_tree_value_compare<Compare, Value, KeyOfValue> value_compare;
private:
struct Data
//Inherit from value_compare to do EBO
: public value_compare
{
BOOST_COPYABLE_AND_MOVABLE(Data)
public:
Data()
: value_compare(), m_vect()
{}
explicit Data(const Data &d)
: value_compare(static_cast<const value_compare&>(d)), m_vect(d.m_vect)
{}
Data(BOOST_RV_REF(Data) d)
: value_compare(boost::move(static_cast<value_compare&>(d))), m_vect(boost::move(d.m_vect))
{}
Data(const Data &d, const A &a)
: value_compare(static_cast<const value_compare&>(d)), m_vect(d.m_vect, a)
{}
Data(BOOST_RV_REF(Data) d, const A &a)
: value_compare(boost::move(static_cast<value_compare&>(d))), m_vect(boost::move(d.m_vect), a)
{}
explicit Data(const Compare &comp)
: value_compare(comp), m_vect()
{}
Data(const Compare &comp, const allocator_t &alloc)
: value_compare(comp), m_vect(alloc)
{}
explicit Data(const allocator_t &alloc)
: value_compare(), m_vect(alloc)
{}
Data& operator=(BOOST_COPY_ASSIGN_REF(Data) d)
{
this->value_compare::operator=(d);
m_vect = d.m_vect;
return *this;
}
Data& operator=(BOOST_RV_REF(Data) d)
{
this->value_compare::operator=(boost::move(static_cast<value_compare &>(d)));
m_vect = boost::move(d.m_vect);
return *this;
}
void swap(Data &d)
{
value_compare& mycomp = *this, & othercomp = d;
boost::container::swap_dispatch(mycomp, othercomp);
this->m_vect.swap(d.m_vect);
}
vector_t m_vect;
};
Data m_data;
BOOST_COPYABLE_AND_MOVABLE(flat_tree)
public:
typedef typename vector_t::value_type value_type;
typedef typename vector_t::pointer pointer;
typedef typename vector_t::const_pointer const_pointer;
typedef typename vector_t::reference reference;
typedef typename vector_t::const_reference const_reference;
typedef Key key_type;
typedef Compare key_compare;
typedef typename vector_t::allocator_type allocator_type;
typedef typename vector_t::size_type size_type;
typedef typename vector_t::difference_type difference_type;
typedef typename vector_t::iterator iterator;
typedef typename vector_t::const_iterator const_iterator;
typedef typename vector_t::reverse_iterator reverse_iterator;
typedef typename vector_t::const_reverse_iterator const_reverse_iterator;
//!Standard extension
typedef allocator_type stored_allocator_type;
private:
typedef allocator_traits<stored_allocator_type> stored_allocator_traits;
public:
flat_tree()
: m_data()
{ }
explicit flat_tree(const Compare& comp)
: m_data(comp)
{ }
flat_tree(const Compare& comp, const allocator_type& a)
: m_data(comp, a)
{ }
explicit flat_tree(const allocator_type& a)
: m_data(a)
{ }
flat_tree(const flat_tree& x)
: m_data(x.m_data)
{ }
flat_tree(BOOST_RV_REF(flat_tree) x)
: m_data(boost::move(x.m_data))
{ }
flat_tree(const flat_tree& x, const allocator_type &a)
: m_data(x.m_data, a)
{ }
flat_tree(BOOST_RV_REF(flat_tree) x, const allocator_type &a)
: m_data(boost::move(x.m_data), a)
{ }
template <class InputIterator>
flat_tree( ordered_range_t, InputIterator first, InputIterator last
, const Compare& comp = Compare()
, const allocator_type& a = allocator_type())
: m_data(comp, a)
{ this->m_data.m_vect.insert(this->m_data.m_vect.end(), first, last); }
template <class InputIterator>
flat_tree( bool unique_insertion
, InputIterator first, InputIterator last
, const Compare& comp = Compare()
, const allocator_type& a = allocator_type())
: m_data(comp, a)
{
//Use cend() as hint to achieve linear time for
//ordered ranges as required by the standard
//for the constructor
//Call end() every iteration as reallocation might have invalidated iterators
if(unique_insertion){
for ( ; first != last; ++first){
this->insert_unique(this->cend(), *first);
}
}
else{
for ( ; first != last; ++first){
this->insert_equal(this->cend(), *first);
}
}
}
~flat_tree()
{}
flat_tree& operator=(BOOST_COPY_ASSIGN_REF(flat_tree) x)
{ m_data = x.m_data; return *this; }
flat_tree& operator=(BOOST_RV_REF(flat_tree) mx)
{ m_data = boost::move(mx.m_data); return *this; }
public:
// accessors:
Compare key_comp() const
{ return this->m_data.get_comp(); }
value_compare value_comp() const
{ return this->m_data; }
allocator_type get_allocator() const
{ return this->m_data.m_vect.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return this->m_data.m_vect.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return this->m_data.m_vect.get_stored_allocator(); }
iterator begin()
{ return this->m_data.m_vect.begin(); }
const_iterator begin() const
{ return this->cbegin(); }
const_iterator cbegin() const
{ return this->m_data.m_vect.begin(); }
iterator end()
{ return this->m_data.m_vect.end(); }
const_iterator end() const
{ return this->cend(); }
const_iterator cend() const
{ return this->m_data.m_vect.end(); }
reverse_iterator rbegin()
{ return reverse_iterator(this->end()); }
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(this->cend()); }
reverse_iterator rend()
{ return reverse_iterator(this->begin()); }
const_reverse_iterator rend() const
{ return this->crend(); }
const_reverse_iterator crend() const
{ return const_reverse_iterator(this->cbegin()); }
bool empty() const
{ return this->m_data.m_vect.empty(); }
size_type size() const
{ return this->m_data.m_vect.size(); }
size_type max_size() const
{ return this->m_data.m_vect.max_size(); }
void swap(flat_tree& other)
{ this->m_data.swap(other.m_data); }
public:
// insert/erase
std::pair<iterator,bool> insert_unique(const value_type& val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
ret.second = this->priv_insert_unique_prepare(val, data);
ret.first = ret.second ? this->priv_insert_commit(data, val)
: iterator(vector_iterator_get_ptr(data.position));
return ret;
}
std::pair<iterator,bool> insert_unique(BOOST_RV_REF(value_type) val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
ret.second = this->priv_insert_unique_prepare(val, data);
ret.first = ret.second ? this->priv_insert_commit(data, boost::move(val))
: iterator(vector_iterator_get_ptr(data.position));
return ret;
}
iterator insert_equal(const value_type& val)
{
iterator i = this->upper_bound(KeyOfValue()(val));
i = this->m_data.m_vect.insert(i, val);
return i;
}
iterator insert_equal(BOOST_RV_REF(value_type) mval)
{
iterator i = this->upper_bound(KeyOfValue()(mval));
i = this->m_data.m_vect.insert(i, boost::move(mval));
return i;
}
iterator insert_unique(const_iterator pos, const value_type& val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
return this->priv_insert_unique_prepare(pos, val, data)
? this->priv_insert_commit(data, val)
: iterator(vector_iterator_get_ptr(data.position));
}
iterator insert_unique(const_iterator pos, BOOST_RV_REF(value_type) val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
return this->priv_insert_unique_prepare(pos, val, data)
? this->priv_insert_commit(data, boost::move(val))
: iterator(vector_iterator_get_ptr(data.position));
}
iterator insert_equal(const_iterator pos, const value_type& val)
{
insert_commit_data data;
this->priv_insert_equal_prepare(pos, val, data);
return this->priv_insert_commit(data, val);
}
iterator insert_equal(const_iterator pos, BOOST_RV_REF(value_type) mval)
{
insert_commit_data data;
this->priv_insert_equal_prepare(pos, mval, data);
return this->priv_insert_commit(data, boost::move(mval));
}
template <class InIt>
void insert_unique(InIt first, InIt last)
{
for ( ; first != last; ++first){
this->insert_unique(*first);
}
}
template <class InIt>
void insert_equal(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{ this->priv_insert_equal_loop(first, last); }
template <class InIt>
void insert_equal(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{
const size_type len = static_cast<size_type>(std::distance(first, last));
this->reserve(this->size()+len);
this->priv_insert_equal_loop(first, last);
}
//Ordered
template <class InIt>
void insert_equal(ordered_range_t, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{ this->priv_insert_equal_loop_ordered(first, last); }
template <class FwdIt>
void insert_equal(ordered_range_t, FwdIt first, FwdIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_input_iterator<FwdIt>::value &&
container_detail::is_forward_iterator<FwdIt>::value
>::type * = 0
#endif
)
{
const size_type len = static_cast<size_type>(std::distance(first, last));
this->reserve(this->size()+len);
this->priv_insert_equal_loop_ordered(first, last);
}
template <class BidirIt>
void insert_equal(ordered_range_t, BidirIt first, BidirIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_input_iterator<BidirIt>::value &&
!container_detail::is_forward_iterator<BidirIt>::value
>::type * = 0
#endif
)
{ this->priv_insert_ordered_range(false, first, last); }
template <class InIt>
void insert_unique(ordered_unique_range_t, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< container_detail::is_input_iterator<InIt>::value ||
container_detail::is_forward_iterator<InIt>::value
>::type * = 0
#endif
)
{
const_iterator pos(this->cend());
for ( ; first != last; ++first){
pos = this->insert_unique(pos, *first);
++pos;
}
}
template <class BidirIt>
void insert_unique(ordered_unique_range_t, BidirIt first, BidirIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !(container_detail::is_input_iterator<BidirIt>::value ||
container_detail::is_forward_iterator<BidirIt>::value)
>::type * = 0
#endif
)
{ this->priv_insert_ordered_range(true, first, last); }
#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
template <class... Args>
std::pair<iterator, bool> emplace_unique(Args&&... args)
{
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v;
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v));
stored_allocator_type &a = this->get_stored_allocator();
stored_allocator_traits::construct(a, &val, ::boost::forward<Args>(args)... );
value_destructor<stored_allocator_type> d(a, val);
return this->insert_unique(::boost::move(val));
}
template <class... Args>
iterator emplace_hint_unique(const_iterator hint, Args&&... args)
{
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v;
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v));
stored_allocator_type &a = this->get_stored_allocator();
stored_allocator_traits::construct(a, &val, ::boost::forward<Args>(args)... );
value_destructor<stored_allocator_type> d(a, val);
return this->insert_unique(hint, ::boost::move(val));
}
template <class... Args>
iterator emplace_equal(Args&&... args)
{
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v;
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v));
stored_allocator_type &a = this->get_stored_allocator();
stored_allocator_traits::construct(a, &val, ::boost::forward<Args>(args)... );
value_destructor<stored_allocator_type> d(a, val);
return this->insert_equal(::boost::move(val));
}
template <class... Args>
iterator emplace_hint_equal(const_iterator hint, Args&&... args)
{
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v;
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v));
stored_allocator_type &a = this->get_stored_allocator();
stored_allocator_traits::construct(a, &val, ::boost::forward<Args>(args)... );
value_destructor<stored_allocator_type> d(a, val);
return this->insert_equal(hint, ::boost::move(val));
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
std::pair<iterator, bool> \
emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v; \
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v)); \
stored_allocator_type &a = this->get_stored_allocator(); \
stored_allocator_traits::construct(a, &val \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
value_destructor<stored_allocator_type> d(a, val); \
return this->insert_unique(::boost::move(val)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint_unique(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v; \
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v)); \
stored_allocator_type &a = this->get_stored_allocator(); \
stored_allocator_traits::construct(a, &val \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
value_destructor<stored_allocator_type> d(a, val); \
return this->insert_unique(hint, ::boost::move(val)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v; \
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v)); \
stored_allocator_type &a = this->get_stored_allocator(); \
stored_allocator_traits::construct(a, &val \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
value_destructor<stored_allocator_type> d(a, val); \
return this->insert_equal(::boost::move(val)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint_equal(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
aligned_storage<sizeof(value_type), alignment_of<value_type>::value> v; \
value_type &val = *static_cast<value_type *>(static_cast<void *>(&v)); \
stored_allocator_type &a = this->get_stored_allocator(); \
stored_allocator_traits::construct(a, &val \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
value_destructor<stored_allocator_type> d(a, val); \
return this->insert_equal(hint, ::boost::move(val)); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
iterator erase(const_iterator position)
{ return this->m_data.m_vect.erase(position); }
size_type erase(const key_type& k)
{
std::pair<iterator,iterator > itp = this->equal_range(k);
size_type ret = static_cast<size_type>(itp.second-itp.first);
if (ret){
this->m_data.m_vect.erase(itp.first, itp.second);
}
return ret;
}
iterator erase(const_iterator first, const_iterator last)
{ return this->m_data.m_vect.erase(first, last); }
void clear()
{ this->m_data.m_vect.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ this->m_data.m_vect.shrink_to_fit(); }
// set operations:
iterator find(const key_type& k)
{
iterator i = this->lower_bound(k);
iterator end_it = this->end();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
const_iterator find(const key_type& k) const
{
const_iterator i = this->lower_bound(k);
const_iterator end_it = this->cend();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
// set operations:
size_type count(const key_type& k) const
{
std::pair<const_iterator, const_iterator> p = this->equal_range(k);
size_type n = p.second - p.first;
return n;
}
iterator lower_bound(const key_type& k)
{ return this->priv_lower_bound(this->begin(), this->end(), k); }
const_iterator lower_bound(const key_type& k) const
{ return this->priv_lower_bound(this->cbegin(), this->cend(), k); }
iterator upper_bound(const key_type& k)
{ return this->priv_upper_bound(this->begin(), this->end(), k); }
const_iterator upper_bound(const key_type& k) const
{ return this->priv_upper_bound(this->cbegin(), this->cend(), k); }
std::pair<iterator,iterator> equal_range(const key_type& k)
{ return this->priv_equal_range(this->begin(), this->end(), k); }
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
{ return this->priv_equal_range(this->cbegin(), this->cend(), k); }
std::pair<iterator, iterator> lower_bound_range(const key_type& k)
{ return this->priv_lower_bound_range(this->begin(), this->end(), k); }
std::pair<const_iterator, const_iterator> lower_bound_range(const key_type& k) const
{ return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); }
size_type capacity() const
{ return this->m_data.m_vect.capacity(); }
void reserve(size_type cnt)
{ this->m_data.m_vect.reserve(cnt); }
friend bool operator==(const flat_tree& x, const flat_tree& y)
{
return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin());
}
friend bool operator<(const flat_tree& x, const flat_tree& y)
{
return std::lexicographical_compare(x.begin(), x.end(),
y.begin(), y.end());
}
friend bool operator!=(const flat_tree& x, const flat_tree& y)
{ return !(x == y); }
friend bool operator>(const flat_tree& x, const flat_tree& y)
{ return y < x; }
friend bool operator<=(const flat_tree& x, const flat_tree& y)
{ return !(y < x); }
friend bool operator>=(const flat_tree& x, const flat_tree& y)
{ return !(x < y); }
friend void swap(flat_tree& x, flat_tree& y)
{ x.swap(y); }
private:
struct insert_commit_data
{
const_iterator position;
};
// insert/erase
void priv_insert_equal_prepare
(const_iterator pos, const value_type& val, insert_commit_data &data)
{
// N1780
// To insert val at pos:
// if pos == end || val <= *pos
// if pos == begin || val >= *(pos-1)
// insert val before pos
// else
// insert val before upper_bound(val)
// else
// insert val before lower_bound(val)
const value_compare &val_cmp = this->m_data;
if(pos == this->cend() || !val_cmp(*pos, val)){
if (pos == this->cbegin() || !val_cmp(val, pos[-1])){
data.position = pos;
}
else{
data.position =
this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val));
}
}
else{
data.position =
this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val));
}
}
bool priv_insert_unique_prepare
(const_iterator b, const_iterator e, const value_type& val, insert_commit_data &commit_data)
{
const value_compare &val_cmp = this->m_data;
commit_data.position = this->priv_lower_bound(b, e, KeyOfValue()(val));
return commit_data.position == e || val_cmp(val, *commit_data.position);
}
bool priv_insert_unique_prepare
(const value_type& val, insert_commit_data &commit_data)
{ return this->priv_insert_unique_prepare(this->cbegin(), this->cend(), val, commit_data); }
bool priv_insert_unique_prepare
(const_iterator pos, const value_type& val, insert_commit_data &commit_data)
{
//N1780. Props to Howard Hinnant!
//To insert val at pos:
//if pos == end || val <= *pos
// if pos == begin || val >= *(pos-1)
// insert val before pos
// else
// insert val before upper_bound(val)
//else if pos+1 == end || val <= *(pos+1)
// insert val after pos
//else
// insert val before lower_bound(val)
const value_compare &val_cmp = this->m_data;
const const_iterator cend_it = this->cend();
if(pos == cend_it || val_cmp(val, *pos)){ //Check if val should go before end
const const_iterator cbeg = this->cbegin();
commit_data.position = pos;
if(pos == cbeg){ //If container is empty then insert it in the beginning
return true;
}
const_iterator prev(pos);
--prev;
if(val_cmp(*prev, val)){ //If previous element was less, then it should go between prev and pos
return true;
}
else if(!val_cmp(val, *prev)){ //If previous was equal then insertion should fail
commit_data.position = prev;
return false;
}
else{ //Previous was bigger so insertion hint was pointless, dispatch to hintless insertion
//but reduce the search between beg and prev as prev is bigger than val
return this->priv_insert_unique_prepare(cbeg, prev, val, commit_data);
}
}
else{
//The hint is before the insertion position, so insert it
//in the remaining range [pos, end)
return this->priv_insert_unique_prepare(pos, cend_it, val, commit_data);
}
}
template<class Convertible>
iterator priv_insert_commit
(insert_commit_data &commit_data, BOOST_FWD_REF(Convertible) convertible)
{
return this->m_data.m_vect.insert
( commit_data.position
, boost::forward<Convertible>(convertible));
}
template <class RanIt>
RanIt priv_lower_bound(RanIt first, const RanIt last,
const key_type & key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += step;
if (key_cmp(key_extract(*middle), key)) {
first = ++middle;
len -= step + 1;
}
else{
len = step;
}
}
return first;
}
template <class RanIt>
RanIt priv_upper_bound(RanIt first, const RanIt last,
const key_type & key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += step;
if (key_cmp(key, key_extract(*middle))) {
len = step;
}
else{
first = ++middle;
len -= step + 1;
}
}
return first;
}
template <class RanIt>
std::pair<RanIt, RanIt>
priv_equal_range(RanIt first, RanIt last, const key_type& key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += step;
if (key_cmp(key_extract(*middle), key)){
first = ++middle;
len -= step + 1;
}
else if (key_cmp(key, key_extract(*middle))){
len = step;
}
else {
//Middle is equal to key
last = first;
last += len;
return std::pair<RanIt, RanIt>
( this->priv_lower_bound(first, middle, key)
, this->priv_upper_bound(++middle, last, key));
}
}
return std::pair<RanIt, RanIt>(first, first);
}
template<class RanIt>
std::pair<RanIt, RanIt> priv_lower_bound_range(RanIt first, RanIt last, const key_type& k) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
RanIt lb(this->priv_lower_bound(first, last, k)), ub(lb);
if(lb != last && static_cast<difference_type>(!key_cmp(k, key_extract(*lb)))){
++ub;
}
return std::pair<RanIt, RanIt>(lb, ub);
}
template<class InIt>
void priv_insert_equal_loop(InIt first, InIt last)
{
for ( ; first != last; ++first){
this->insert_equal(*first);
}
}
template<class InIt>
void priv_insert_equal_loop_ordered(InIt first, InIt last)
{
const_iterator pos(this->cend());
for ( ; first != last; ++first){
//If ordered, then try hint version
//to achieve constant-time complexity per insertion
pos = this->insert_equal(pos, *first);
++pos;
}
}
template <class BidirIt>
void priv_insert_ordered_range(const bool unique_values, BidirIt first, BidirIt last)
{
size_type len = static_cast<size_type>(std::distance(first, last));
//Prereserve all memory so that iterators are not invalidated
this->reserve(this->size()+len);
//Auxiliary data for insertion positions.
const size_type BurstSize = len;
const ::boost::movelib::unique_ptr<size_type[]> positions =
::boost::movelib::make_unique_definit<size_type[]>(BurstSize);
const const_iterator b(this->cbegin());
const const_iterator ce(this->cend());
const_iterator pos(b);
const value_compare &val_cmp = this->m_data;
//Loop in burst sizes
bool back_insert = false;
while(len && !back_insert){
const size_type burst = len < BurstSize ? len : BurstSize;
size_type unique_burst = 0u;
size_type checked = 0;
for(; checked != burst; ++checked){
//Get the insertion position for each key, use std::iterator_traits<BidirIt>::value_type
//because it can be different from container::value_type
//(e.g. conversion between std::pair<A, B> -> boost::container::pair<A, B>
const typename std::iterator_traits<BidirIt>::value_type & val = *first;
pos = const_cast<const flat_tree&>(*this).priv_lower_bound(pos, ce, KeyOfValue()(val));
//Check if already present
if (pos != ce){
++first;
--len;
positions[checked] = (unique_values && !val_cmp(val, *pos)) ?
size_type(-1) : (++unique_burst, static_cast<size_type>(pos - b));
}
else{ //this element and the remaining should be back inserted
back_insert = true;
break;
}
}
if(unique_burst){
//Insert all in a single step in the precalculated positions
this->m_data.m_vect.insert_ordered_at(unique_burst, positions.get() + checked, first);
//Next search position updated, iterator still valid because we've preserved the vector
pos += unique_burst;
}
}
//The remaining range should be back inserted
if(unique_values){
while(len--){
BidirIt next(first);
++next;
if(next == last || val_cmp(*first, *next)){
const bool room = this->m_data.m_vect.stable_emplace_back(*first);
(void)room;
BOOST_ASSERT(room);
}
first = next;
}
BOOST_ASSERT(first == last);
}
else{
BOOST_ASSERT(size_type(std::distance(first, last)) == len);
if(len)
this->m_data.m_vect.insert(this->m_data.m_vect.cend(), len, first, last);
}
}
};
} //namespace container_detail {
} //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class V, class KOV,
class C, class A>
struct has_trivial_destructor_after_move<boost::container::container_detail::flat_tree<K, V, KOV, C, A> >
{
static const bool value = has_trivial_destructor_after_move<A>::value && has_trivial_destructor_after_move<C>::value;
};
*/
} //namespace boost {
#include <boost/container/detail/config_end.hpp>
#endif // BOOST_CONTAINER_FLAT_TREE_HPP