ext-boost/boost/concept_archetype.hpp

670 lines
23 KiB
C++
Raw Normal View History

//
// (C) Copyright Jeremy Siek 2000.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Revision History:
//
// 17 July 2001: Added const to some member functions. (Jeremy Siek)
// 05 May 2001: Removed static dummy_cons object. (Jeremy Siek)
// See http://www.boost.org/libs/concept_check for documentation.
#ifndef BOOST_CONCEPT_ARCHETYPES_HPP
#define BOOST_CONCEPT_ARCHETYPES_HPP
#include <boost/config.hpp>
#include <boost/iterator.hpp>
#include <boost/mpl/identity.hpp>
#include <functional>
namespace boost {
//===========================================================================
// Basic Archetype Classes
namespace detail {
class dummy_constructor { };
}
// A type that models no concept. The template parameter
// is only there so that null_archetype types can be created
// that have different type.
template <class T = int>
class null_archetype {
private:
null_archetype() { }
null_archetype(const null_archetype&) { }
null_archetype& operator=(const null_archetype&) { return *this; }
public:
null_archetype(detail::dummy_constructor) { }
#ifndef __MWERKS__
template <class TT>
friend void dummy_friend(); // just to avoid warnings
#endif
};
// This is a helper class that provides a way to get a reference to
// an object. The get() function will never be called at run-time
// (nothing in this file will) so this seemingly very bad function
// is really quite innocent. The name of this class needs to be
// changed.
template <class T>
class static_object
{
public:
static T& get()
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
return *reinterpret_cast<T*>(0);
#else
static char d[sizeof(T)];
return *reinterpret_cast<T*>(d);
#endif
}
};
template <class Base = null_archetype<> >
class default_constructible_archetype : public Base {
public:
default_constructible_archetype()
: Base(static_object<detail::dummy_constructor>::get()) { }
default_constructible_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class assignable_archetype : public Base {
assignable_archetype() { }
assignable_archetype(const assignable_archetype&) { }
public:
assignable_archetype& operator=(const assignable_archetype&) {
return *this;
}
assignable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class copy_constructible_archetype : public Base {
public:
copy_constructible_archetype()
: Base(static_object<detail::dummy_constructor>::get()) { }
copy_constructible_archetype(const copy_constructible_archetype&)
: Base(static_object<detail::dummy_constructor>::get()) { }
copy_constructible_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base = null_archetype<> >
class sgi_assignable_archetype : public Base {
public:
sgi_assignable_archetype(const sgi_assignable_archetype&)
: Base(static_object<detail::dummy_constructor>::get()) { }
sgi_assignable_archetype& operator=(const sgi_assignable_archetype&) {
return *this;
}
sgi_assignable_archetype(const detail::dummy_constructor& x) : Base(x) { }
};
struct default_archetype_base {
default_archetype_base(detail::dummy_constructor) { }
};
// Careful, don't use same type for T and Base. That results in the
// conversion operator being invalid. Since T is often
// null_archetype, can't use null_archetype for Base.
template <class T, class Base = default_archetype_base>
class convertible_to_archetype : public Base {
private:
convertible_to_archetype() { }
convertible_to_archetype(const convertible_to_archetype& ) { }
convertible_to_archetype& operator=(const convertible_to_archetype&)
{ return *this; }
public:
convertible_to_archetype(detail::dummy_constructor x) : Base(x) { }
operator const T&() const { return static_object<T>::get(); }
};
template <class T, class Base = default_archetype_base>
class convertible_from_archetype : public Base {
private:
convertible_from_archetype() { }
convertible_from_archetype(const convertible_from_archetype& ) { }
convertible_from_archetype& operator=(const convertible_from_archetype&)
{ return *this; }
public:
convertible_from_archetype(detail::dummy_constructor x) : Base(x) { }
convertible_from_archetype(const T&) { }
convertible_from_archetype& operator=(const T&)
{ return *this; }
};
class boolean_archetype {
public:
boolean_archetype(const boolean_archetype&) { }
operator bool() const { return true; }
boolean_archetype(detail::dummy_constructor) { }
private:
boolean_archetype() { }
boolean_archetype& operator=(const boolean_archetype&) { return *this; }
};
template <class Base = null_archetype<> >
class equality_comparable_archetype : public Base {
public:
equality_comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator==(const equality_comparable_archetype<Base>&,
const equality_comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base>
boolean_archetype
operator!=(const equality_comparable_archetype<Base>&,
const equality_comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base = null_archetype<> >
class equality_comparable2_first_archetype : public Base {
public:
equality_comparable2_first_archetype(detail::dummy_constructor x)
: Base(x) { }
};
template <class Base = null_archetype<> >
class equality_comparable2_second_archetype : public Base {
public:
equality_comparable2_second_archetype(detail::dummy_constructor x)
: Base(x) { }
};
template <class Base1, class Base2>
boolean_archetype
operator==(const equality_comparable2_first_archetype<Base1>&,
const equality_comparable2_second_archetype<Base2>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base1, class Base2>
boolean_archetype
operator!=(const equality_comparable2_first_archetype<Base1>&,
const equality_comparable2_second_archetype<Base2>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base = null_archetype<> >
class less_than_comparable_archetype : public Base {
public:
less_than_comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator<(const less_than_comparable_archetype<Base>&,
const less_than_comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base = null_archetype<> >
class comparable_archetype : public Base {
public:
comparable_archetype(detail::dummy_constructor x) : Base(x) { }
};
template <class Base>
boolean_archetype
operator<(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base>
boolean_archetype
operator<=(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base>
boolean_archetype
operator>(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
template <class Base>
boolean_archetype
operator>=(const comparable_archetype<Base>&,
const comparable_archetype<Base>&)
{
return boolean_archetype(static_object<detail::dummy_constructor>::get());
}
// The purpose of the optags is so that one can specify
// exactly which types the operator< is defined between.
// This is useful for allowing the operations:
//
// A a; B b;
// a < b
// b < a
//
// without also allowing the combinations:
//
// a < a
// b < b
//
struct optag1 { };
struct optag2 { };
struct optag3 { };
#define BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(OP, NAME) \
template <class Base = null_archetype<>, class Tag = optag1 > \
class NAME##_first_archetype : public Base { \
public: \
NAME##_first_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Base = null_archetype<>, class Tag = optag1 > \
class NAME##_second_archetype : public Base { \
public: \
NAME##_second_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class BaseFirst, class BaseSecond, class Tag> \
boolean_archetype \
operator OP (const NAME##_first_archetype<BaseFirst, Tag>&, \
const NAME##_second_archetype<BaseSecond, Tag>&) \
{ \
return boolean_archetype(static_object<detail::dummy_constructor>::get()); \
}
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(==, equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(!=, not_equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(<, less_than_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(<=, less_equal_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(>, greater_than_op)
BOOST_DEFINE_BINARY_PREDICATE_ARCHETYPE(>=, greater_equal_op)
#define BOOST_DEFINE_OPERATOR_ARCHETYPE(OP, NAME) \
template <class Base = null_archetype<> > \
class NAME##_archetype : public Base { \
public: \
NAME##_archetype(detail::dummy_constructor x) : Base(x) { } \
NAME##_archetype(const NAME##_archetype&) \
: Base(static_object<detail::dummy_constructor>::get()) { } \
NAME##_archetype& operator=(const NAME##_archetype&) { return *this; } \
}; \
template <class Base> \
NAME##_archetype<Base> \
operator OP (const NAME##_archetype<Base>&,\
const NAME##_archetype<Base>&) \
{ \
return \
NAME##_archetype<Base>(static_object<detail::dummy_constructor>::get()); \
}
BOOST_DEFINE_OPERATOR_ARCHETYPE(+, addable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(-, subtractable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(*, multipliable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(/, dividable)
BOOST_DEFINE_OPERATOR_ARCHETYPE(%, modable)
// As is, these are useless because of the return type.
// Need to invent a better way...
#define BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(OP, NAME) \
template <class Return, class Base = null_archetype<> > \
class NAME##_first_archetype : public Base { \
public: \
NAME##_first_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Return, class Base = null_archetype<> > \
class NAME##_second_archetype : public Base { \
public: \
NAME##_second_archetype(detail::dummy_constructor x) : Base(x) { } \
}; \
\
template <class Return, class BaseFirst, class BaseSecond> \
Return \
operator OP (const NAME##_first_archetype<Return, BaseFirst>&, \
const NAME##_second_archetype<Return, BaseSecond>&) \
{ \
return Return(static_object<detail::dummy_constructor>::get()); \
}
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(+, plus_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(*, time_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(/, divide_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(-, subtract_op)
BOOST_DEFINE_BINARY_OPERATOR_ARCHETYPE(%, mod_op)
//===========================================================================
// Function Object Archetype Classes
template <class Return>
class generator_archetype {
public:
const Return& operator()() {
return static_object<Return>::get();
}
};
class void_generator_archetype {
public:
void operator()() { }
};
template <class Arg, class Return>
class unary_function_archetype {
private:
unary_function_archetype() { }
public:
unary_function_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg&) const {
return static_object<Return>::get();
}
};
template <class Arg1, class Arg2, class Return>
class binary_function_archetype {
private:
binary_function_archetype() { }
public:
binary_function_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg1&, const Arg2&) const {
return static_object<Return>::get();
}
};
template <class Arg>
class unary_predicate_archetype {
typedef boolean_archetype Return;
unary_predicate_archetype() { }
public:
unary_predicate_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg&) const {
return static_object<Return>::get();
}
};
template <class Arg1, class Arg2, class Base = null_archetype<> >
class binary_predicate_archetype {
typedef boolean_archetype Return;
binary_predicate_archetype() { }
public:
binary_predicate_archetype(detail::dummy_constructor) { }
const Return& operator()(const Arg1&, const Arg2&) const {
return static_object<Return>::get();
}
};
//===========================================================================
// Iterator Archetype Classes
template <class T, int I = 0>
class input_iterator_archetype
{
private:
typedef input_iterator_archetype self;
public:
typedef std::input_iterator_tag iterator_category;
typedef T value_type;
struct reference {
operator const value_type&() const { return static_object<T>::get(); }
};
typedef const T* pointer;
typedef std::ptrdiff_t difference_type;
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return reference(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class input_iterator_archetype_no_proxy
{
private:
typedef input_iterator_archetype_no_proxy self;
public:
typedef std::input_iterator_tag iterator_category;
typedef T value_type;
typedef const T& reference;
typedef const T* pointer;
typedef std::ptrdiff_t difference_type;
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
struct output_proxy {
output_proxy& operator=(const T&) { return *this; }
};
template <class T>
class output_iterator_archetype
{
public:
typedef output_iterator_archetype self;
public:
typedef std::output_iterator_tag iterator_category;
typedef output_proxy<T> value_type;
typedef output_proxy<T> reference;
typedef void pointer;
typedef void difference_type;
output_iterator_archetype(detail::dummy_constructor) { }
output_iterator_archetype(const self&) { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return output_proxy<T>(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
private:
output_iterator_archetype() { }
};
template <class T>
class input_output_iterator_archetype
{
private:
typedef input_output_iterator_archetype self;
struct in_out_tag : public std::input_iterator_tag, public std::output_iterator_tag { };
public:
typedef in_out_tag iterator_category;
typedef T value_type;
struct reference {
reference& operator=(const T&) { return *this; }
operator value_type() { return static_object<T>::get(); }
};
typedef const T* pointer;
typedef std::ptrdiff_t difference_type;
input_output_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return reference(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class forward_iterator_archetype
{
public:
typedef forward_iterator_archetype self;
public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef const T& reference;
typedef T const* pointer;
typedef std::ptrdiff_t difference_type;
forward_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class mutable_forward_iterator_archetype
{
public:
typedef mutable_forward_iterator_archetype self;
public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
mutable_forward_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
};
template <class T>
class bidirectional_iterator_archetype
{
public:
typedef bidirectional_iterator_archetype self;
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef const T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
bidirectional_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
};
template <class T>
class mutable_bidirectional_iterator_archetype
{
public:
typedef mutable_bidirectional_iterator_archetype self;
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
mutable_bidirectional_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
};
template <class T>
class random_access_iterator_archetype
{
public:
typedef random_access_iterator_archetype self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef const T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
random_access_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
reference operator[](difference_type) const
{ return static_object<T>::get(); }
self& operator+=(difference_type) { return *this; }
self& operator-=(difference_type) { return *this; }
difference_type operator-(const self&) const
{ return difference_type(); }
self operator+(difference_type) const { return *this; }
self operator-(difference_type) const { return *this; }
bool operator<(const self&) const { return true; }
bool operator<=(const self&) const { return true; }
bool operator>(const self&) const { return true; }
bool operator>=(const self&) const { return true; }
};
template <class T>
random_access_iterator_archetype<T>
operator+(typename random_access_iterator_archetype<T>::difference_type,
const random_access_iterator_archetype<T>& x)
{ return x; }
template <class T>
class mutable_random_access_iterator_archetype
{
public:
typedef mutable_random_access_iterator_archetype self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
mutable_random_access_iterator_archetype() { }
self& operator=(const self&) { return *this; }
bool operator==(const self&) const { return true; }
bool operator!=(const self&) const { return true; }
reference operator*() const { return static_object<T>::get(); }
self& operator++() { return *this; }
self operator++(int) { return *this; }
self& operator--() { return *this; }
self operator--(int) { return *this; }
reference operator[](difference_type) const
{ return static_object<T>::get(); }
self& operator+=(difference_type) { return *this; }
self& operator-=(difference_type) { return *this; }
difference_type operator-(const self&) const
{ return difference_type(); }
self operator+(difference_type) const { return *this; }
self operator-(difference_type) const { return *this; }
bool operator<(const self&) const { return true; }
bool operator<=(const self&) const { return true; }
bool operator>(const self&) const { return true; }
bool operator>=(const self&) const { return true; }
};
template <class T>
mutable_random_access_iterator_archetype<T>
operator+
(typename mutable_random_access_iterator_archetype<T>::difference_type,
const mutable_random_access_iterator_archetype<T>& x)
{ return x; }
} // namespace boost
#endif // BOOST_CONCEPT_ARCHETYPES_H