mirror of
https://github.com/yuzu-emu/ext-boost.git
synced 2025-01-18 17:27:17 +00:00
408 lines
15 KiB
C++
408 lines
15 KiB
C++
/////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// (C) Copyright Olaf Krzikalla 2004-2006.
|
|
// (C) Copyright Ion Gaztanaga 2006-2014
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// See http://www.boost.org/libs/intrusive for documentation.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BOOST_INTRUSIVE_CIRCULAR_SLIST_ALGORITHMS_HPP
|
|
#define BOOST_INTRUSIVE_CIRCULAR_SLIST_ALGORITHMS_HPP
|
|
|
|
#if defined(_MSC_VER)
|
|
# pragma once
|
|
#endif
|
|
|
|
#include <cstddef>
|
|
#include <boost/intrusive/detail/config_begin.hpp>
|
|
#include <boost/intrusive/intrusive_fwd.hpp>
|
|
#include <boost/intrusive/detail/common_slist_algorithms.hpp>
|
|
#include <boost/intrusive/detail/algo_type.hpp>
|
|
|
|
|
|
namespace boost {
|
|
namespace intrusive {
|
|
|
|
//! circular_slist_algorithms provides basic algorithms to manipulate nodes
|
|
//! forming a circular singly linked list. An empty circular list is formed by a node
|
|
//! whose pointer to the next node points to itself.
|
|
//!
|
|
//! circular_slist_algorithms is configured with a NodeTraits class, which encapsulates the
|
|
//! information about the node to be manipulated. NodeTraits must support the
|
|
//! following interface:
|
|
//!
|
|
//! <b>Typedefs</b>:
|
|
//!
|
|
//! <tt>node</tt>: The type of the node that forms the circular list
|
|
//!
|
|
//! <tt>node_ptr</tt>: A pointer to a node
|
|
//!
|
|
//! <tt>const_node_ptr</tt>: A pointer to a const node
|
|
//!
|
|
//! <b>Static functions</b>:
|
|
//!
|
|
//! <tt>static node_ptr get_next(const_node_ptr n);</tt>
|
|
//!
|
|
//! <tt>static void set_next(node_ptr n, node_ptr next);</tt>
|
|
template<class NodeTraits>
|
|
class circular_slist_algorithms
|
|
/// @cond
|
|
: public detail::common_slist_algorithms<NodeTraits>
|
|
/// @endcond
|
|
{
|
|
/// @cond
|
|
typedef detail::common_slist_algorithms<NodeTraits> base_t;
|
|
/// @endcond
|
|
public:
|
|
typedef typename NodeTraits::node node;
|
|
typedef typename NodeTraits::node_ptr node_ptr;
|
|
typedef typename NodeTraits::const_node_ptr const_node_ptr;
|
|
typedef NodeTraits node_traits;
|
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
|
|
|
|
//! <b>Effects</b>: Constructs an non-used list element, putting the next
|
|
//! pointer to null:
|
|
//! <tt>NodeTraits::get_next(this_node) == node_ptr()</tt>
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void init(node_ptr this_node);
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns true is "this_node" is the only node of a circular list:
|
|
//! or it's a not inserted node:
|
|
//! <tt>return node_ptr() == NodeTraits::get_next(this_node) || NodeTraits::get_next(this_node) == this_node</tt>
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool unique(const_node_ptr this_node);
|
|
|
|
//! <b>Effects</b>: Returns true is "this_node" has the same state as
|
|
//! if it was inited using "init(node_ptr)"
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool inited(const_node_ptr this_node);
|
|
|
|
//! <b>Requires</b>: prev_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the next node of prev_node from the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void unlink_after(node_ptr prev_node);
|
|
|
|
//! <b>Requires</b>: prev_node and last_node must be in a circular list
|
|
//! or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the range (prev_node, last_node) from the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void unlink_after(node_ptr prev_node, node_ptr last_node);
|
|
|
|
//! <b>Requires</b>: prev_node must be a node of a circular list.
|
|
//!
|
|
//! <b>Effects</b>: Links this_node after prev_node in the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void link_after(node_ptr prev_node, node_ptr this_node);
|
|
|
|
//! <b>Requires</b>: b and e must be nodes of the same circular list or an empty range.
|
|
//! and p must be a node of a different circular list.
|
|
//!
|
|
//! <b>Effects</b>: Removes the nodes from (b, e] range from their circular list and inserts
|
|
//! them after p in p's circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void transfer_after(node_ptr p, node_ptr b, node_ptr e);
|
|
|
|
#endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
|
|
|
|
//! <b>Effects</b>: Constructs an empty list, making this_node the only
|
|
//! node of the circular list:
|
|
//! <tt>NodeTraits::get_next(this_node) == this_node</tt>.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void init_header(const node_ptr &this_node)
|
|
{ NodeTraits::set_next(this_node, this_node); }
|
|
|
|
//! <b>Requires</b>: this_node and prev_init_node must be in the same circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of this_node in the circular list starting.
|
|
//! the search from prev_init_node. The first node checked for equality
|
|
//! is NodeTraits::get_next(prev_init_node).
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements between prev_init_node and this_node.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr get_previous_node(const node_ptr &prev_init_node, const node_ptr &this_node)
|
|
{ return base_t::get_previous_node(prev_init_node, this_node); }
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of this_node in the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements in the circular list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr get_previous_node(const node_ptr & this_node)
|
|
{ return base_t::get_previous_node(this_node, this_node); }
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of the previous node of this_node in the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements in the circular list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr get_previous_previous_node(const node_ptr & this_node)
|
|
{ return get_previous_previous_node(this_node, this_node); }
|
|
|
|
//! <b>Requires</b>: this_node and p must be in the same circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of the previous node of this_node in the
|
|
//! circular list starting. the search from p. The first node checked
|
|
//! for equality is NodeTraits::get_next((NodeTraits::get_next(p)).
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements in the circular list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static node_ptr get_previous_previous_node(node_ptr p, const node_ptr & this_node)
|
|
{
|
|
node_ptr p_next = NodeTraits::get_next(p);
|
|
node_ptr p_next_next = NodeTraits::get_next(p_next);
|
|
while (this_node != p_next_next){
|
|
p = p_next;
|
|
p_next = p_next_next;
|
|
p_next_next = NodeTraits::get_next(p_next);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the number of nodes in a circular list. If the circular list
|
|
//! is empty, returns 1.
|
|
//!
|
|
//! <b>Complexity</b>: Linear
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static std::size_t count(const const_node_ptr & this_node)
|
|
{
|
|
std::size_t result = 0;
|
|
const_node_ptr p = this_node;
|
|
do{
|
|
p = NodeTraits::get_next(p);
|
|
++result;
|
|
} while (p != this_node);
|
|
return result;
|
|
}
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list, be an empty circular list or be inited.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the node from the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements in the circular list
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void unlink(const node_ptr & this_node)
|
|
{
|
|
if(NodeTraits::get_next(this_node))
|
|
base_t::unlink_after(get_previous_node(this_node));
|
|
}
|
|
|
|
//! <b>Requires</b>: nxt_node must be a node of a circular list.
|
|
//!
|
|
//! <b>Effects</b>: Links this_node before nxt_node in the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements in the circular list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void link_before (const node_ptr & nxt_node, const node_ptr & this_node)
|
|
{ base_t::link_after(get_previous_node(nxt_node), this_node); }
|
|
|
|
//! <b>Requires</b>: this_node and other_node must be nodes inserted
|
|
//! in circular lists or be empty circular lists.
|
|
//!
|
|
//! <b>Effects</b>: Swaps the position of the nodes: this_node is inserted in
|
|
//! other_nodes position in the second circular list and the other_node is inserted
|
|
//! in this_node's position in the first circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to number of elements of both lists
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void swap_nodes(const node_ptr & this_node, const node_ptr & other_node)
|
|
{
|
|
if (other_node == this_node)
|
|
return;
|
|
const node_ptr this_next = NodeTraits::get_next(this_node);
|
|
const node_ptr other_next = NodeTraits::get_next(other_node);
|
|
const bool this_null = !this_next;
|
|
const bool other_null = !other_next;
|
|
const bool this_empty = this_next == this_node;
|
|
const bool other_empty = other_next == other_node;
|
|
|
|
if(!(other_null || other_empty)){
|
|
NodeTraits::set_next(this_next == other_node ? other_node : get_previous_node(other_node), this_node );
|
|
}
|
|
if(!(this_null | this_empty)){
|
|
NodeTraits::set_next(other_next == this_node ? this_node : get_previous_node(this_node), other_node );
|
|
}
|
|
NodeTraits::set_next(this_node, other_empty ? this_node : (other_next == this_node ? other_node : other_next) );
|
|
NodeTraits::set_next(other_node, this_empty ? other_node : (this_next == other_node ? this_node : this_next ) );
|
|
}
|
|
|
|
//! <b>Effects</b>: Reverses the order of elements in the list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: This function is linear to the contained elements.
|
|
static void reverse(const node_ptr & p)
|
|
{
|
|
node_ptr i = NodeTraits::get_next(p), e(p);
|
|
for (;;) {
|
|
node_ptr nxt(NodeTraits::get_next(i));
|
|
if (nxt == e)
|
|
break;
|
|
base_t::transfer_after(e, i, nxt);
|
|
}
|
|
}
|
|
|
|
//! <b>Effects</b>: Moves the node p n positions towards the end of the list.
|
|
//!
|
|
//! <b>Returns</b>: The previous node of p after the function if there has been any movement,
|
|
//! Null if n leads to no movement.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements plus the number moved positions.
|
|
static node_ptr move_backwards(const node_ptr & p, std::size_t n)
|
|
{
|
|
//Null shift, nothing to do
|
|
if(!n) return node_ptr();
|
|
node_ptr first = NodeTraits::get_next(p);
|
|
|
|
//count() == 1 or 2, nothing to do
|
|
if(NodeTraits::get_next(first) == p)
|
|
return node_ptr();
|
|
|
|
bool end_found = false;
|
|
node_ptr new_last = node_ptr();
|
|
|
|
//Now find the new last node according to the shift count.
|
|
//If we find p before finding the new last node
|
|
//unlink p, shortcut the search now that we know the size of the list
|
|
//and continue.
|
|
for(std::size_t i = 1; i <= n; ++i){
|
|
new_last = first;
|
|
first = NodeTraits::get_next(first);
|
|
if(first == p){
|
|
//Shortcut the shift with the modulo of the size of the list
|
|
n %= i;
|
|
if(!n)
|
|
return node_ptr();
|
|
i = 0;
|
|
//Unlink p and continue the new first node search
|
|
first = NodeTraits::get_next(p);
|
|
base_t::unlink_after(new_last);
|
|
end_found = true;
|
|
}
|
|
}
|
|
|
|
//If the p has not been found in the previous loop, find it
|
|
//starting in the new first node and unlink it
|
|
if(!end_found){
|
|
base_t::unlink_after(base_t::get_previous_node(first, p));
|
|
}
|
|
|
|
//Now link p after the new last node
|
|
base_t::link_after(new_last, p);
|
|
return new_last;
|
|
}
|
|
|
|
//! <b>Effects</b>: Moves the node p n positions towards the beginning of the list.
|
|
//!
|
|
//! <b>Returns</b>: The previous node of p after the function if there has been any movement,
|
|
//! Null if n leads equals to no movement.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements plus the number moved positions.
|
|
static node_ptr move_forward(const node_ptr & p, std::size_t n)
|
|
{
|
|
//Null shift, nothing to do
|
|
if(!n) return node_ptr();
|
|
node_ptr first = node_traits::get_next(p);
|
|
|
|
//count() == 1 or 2, nothing to do
|
|
if(node_traits::get_next(first) == p) return node_ptr();
|
|
|
|
//Iterate until p is found to know where the current last node is.
|
|
//If the shift count is less than the size of the list, we can also obtain
|
|
//the position of the new last node after the shift.
|
|
node_ptr old_last(first), next_to_it, new_last(p);
|
|
std::size_t distance = 1;
|
|
while(p != (next_to_it = node_traits::get_next(old_last))){
|
|
if(++distance > n)
|
|
new_last = node_traits::get_next(new_last);
|
|
old_last = next_to_it;
|
|
}
|
|
//If the shift was bigger or equal than the size, obtain the equivalent
|
|
//forward shifts and find the new last node.
|
|
if(distance <= n){
|
|
//Now find the equivalent forward shifts.
|
|
//Shortcut the shift with the modulo of the size of the list
|
|
std::size_t new_before_last_pos = (distance - (n % distance))% distance;
|
|
//If the shift is a multiple of the size there is nothing to do
|
|
if(!new_before_last_pos) return node_ptr();
|
|
|
|
for( new_last = p
|
|
; new_before_last_pos--
|
|
; new_last = node_traits::get_next(new_last)){
|
|
//empty
|
|
}
|
|
}
|
|
|
|
//Now unlink p and link it after the new last node
|
|
base_t::unlink_after(old_last);
|
|
base_t::link_after(new_last, p);
|
|
return new_last;
|
|
}
|
|
};
|
|
|
|
/// @cond
|
|
|
|
template<class NodeTraits>
|
|
struct get_algo<CircularSListAlgorithms, NodeTraits>
|
|
{
|
|
typedef circular_slist_algorithms<NodeTraits> type;
|
|
};
|
|
|
|
/// @endcond
|
|
|
|
} //namespace intrusive
|
|
} //namespace boost
|
|
|
|
#include <boost/intrusive/detail/config_end.hpp>
|
|
|
|
#endif //BOOST_INTRUSIVE_CIRCULAR_SLIST_ALGORITHMS_HPP
|