mirror of
https://github.com/yuzu-emu/ext-boost.git
synced 2025-01-18 17:27:17 +00:00
343 lines
12 KiB
C++
343 lines
12 KiB
C++
/////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// (C) Copyright Olaf Krzikalla 2004-2006.
|
|
// (C) Copyright Ion Gaztanaga 2006-2014
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// See http://www.boost.org/libs/intrusive for documentation.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BOOST_INTRUSIVE_LINEAR_SLIST_ALGORITHMS_HPP
|
|
#define BOOST_INTRUSIVE_LINEAR_SLIST_ALGORITHMS_HPP
|
|
|
|
#include <boost/intrusive/detail/config_begin.hpp>
|
|
#include <boost/intrusive/intrusive_fwd.hpp>
|
|
#include <boost/intrusive/detail/common_slist_algorithms.hpp>
|
|
#include <boost/intrusive/detail/algo_type.hpp>
|
|
#include <cstddef>
|
|
#include <boost/intrusive/detail/minimal_pair_header.hpp> //std::pair
|
|
|
|
#if defined(BOOST_HAS_PRAGMA_ONCE)
|
|
# pragma once
|
|
#endif
|
|
|
|
namespace boost {
|
|
namespace intrusive {
|
|
|
|
//! linear_slist_algorithms provides basic algorithms to manipulate nodes
|
|
//! forming a linear singly linked list.
|
|
//!
|
|
//! linear_slist_algorithms is configured with a NodeTraits class, which encapsulates the
|
|
//! information about the node to be manipulated. NodeTraits must support the
|
|
//! following interface:
|
|
//!
|
|
//! <b>Typedefs</b>:
|
|
//!
|
|
//! <tt>node</tt>: The type of the node that forms the linear list
|
|
//!
|
|
//! <tt>node_ptr</tt>: A pointer to a node
|
|
//!
|
|
//! <tt>const_node_ptr</tt>: A pointer to a const node
|
|
//!
|
|
//! <b>Static functions</b>:
|
|
//!
|
|
//! <tt>static node_ptr get_next(const_node_ptr n);</tt>
|
|
//!
|
|
//! <tt>static void set_next(node_ptr n, node_ptr next);</tt>
|
|
template<class NodeTraits>
|
|
class linear_slist_algorithms
|
|
/// @cond
|
|
: public detail::common_slist_algorithms<NodeTraits>
|
|
/// @endcond
|
|
{
|
|
/// @cond
|
|
typedef detail::common_slist_algorithms<NodeTraits> base_t;
|
|
/// @endcond
|
|
public:
|
|
typedef typename NodeTraits::node node;
|
|
typedef typename NodeTraits::node_ptr node_ptr;
|
|
typedef typename NodeTraits::const_node_ptr const_node_ptr;
|
|
typedef NodeTraits node_traits;
|
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
|
|
|
|
//! <b>Effects</b>: Constructs an non-used list element, putting the next
|
|
//! pointer to null:
|
|
//! <tt>NodeTraits::get_next(this_node) == node_ptr()</tt>
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void init(const node_ptr & this_node);
|
|
|
|
//! <b>Requires</b>: this_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Returns true is "this_node" is the only node of a circular list:
|
|
//! or it's a not inserted node:
|
|
//! <tt>return node_ptr() == NodeTraits::get_next(this_node) || NodeTraits::get_next(this_node) == this_node</tt>
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool unique(const_node_ptr this_node);
|
|
|
|
//! <b>Effects</b>: Returns true is "this_node" has the same state as if
|
|
//! it was inited using "init(node_ptr)"
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static bool inited(const_node_ptr this_node);
|
|
|
|
//! <b>Requires</b>: prev_node must be in a circular list or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the next node of prev_node from the circular list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void unlink_after(const node_ptr & prev_node);
|
|
|
|
//! <b>Requires</b>: prev_node and last_node must be in a circular list
|
|
//! or be an empty circular list.
|
|
//!
|
|
//! <b>Effects</b>: Unlinks the range (prev_node, last_node) from the linear list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void unlink_after(const node_ptr & prev_node, const node_ptr & last_node);
|
|
|
|
//! <b>Requires</b>: prev_node must be a node of a linear list.
|
|
//!
|
|
//! <b>Effects</b>: Links this_node after prev_node in the linear list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void link_after(const node_ptr & prev_node, const node_ptr & this_node);
|
|
|
|
//! <b>Requires</b>: b and e must be nodes of the same linear list or an empty range.
|
|
//! and p must be a node of a different linear list.
|
|
//!
|
|
//! <b>Effects</b>: Removes the nodes from (b, e] range from their linear list and inserts
|
|
//! them after p in p's linear list.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void transfer_after(const node_ptr & p, const node_ptr & b, const node_ptr & e);
|
|
|
|
#endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
|
|
|
|
//! <b>Effects</b>: Constructs an empty list, making this_node the only
|
|
//! node of the circular list:
|
|
//! <tt>NodeTraits::get_next(this_node) == this_node</tt>.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
BOOST_INTRUSIVE_FORCEINLINE static void init_header(const node_ptr & this_node)
|
|
{ NodeTraits::set_next(this_node, node_ptr ()); }
|
|
|
|
//! <b>Requires</b>: this_node and prev_init_node must be in the same linear list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the previous node of this_node in the linear list starting.
|
|
//! the search from prev_init_node. The first node checked for equality
|
|
//! is NodeTraits::get_next(prev_init_node).
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements between prev_init_node and this_node.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
BOOST_INTRUSIVE_FORCEINLINE static node_ptr get_previous_node(const node_ptr & prev_init_node, const node_ptr & this_node)
|
|
{ return base_t::get_previous_node(prev_init_node, this_node); }
|
|
|
|
//! <b>Requires</b>: this_node must be in a linear list or be an empty linear list.
|
|
//!
|
|
//! <b>Effects</b>: Returns the number of nodes in a linear list. If the linear list
|
|
//! is empty, returns 1.
|
|
//!
|
|
//! <b>Complexity</b>: Linear
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static std::size_t count(const const_node_ptr & this_node)
|
|
{
|
|
std::size_t result = 0;
|
|
const_node_ptr p = this_node;
|
|
do{
|
|
p = NodeTraits::get_next(p);
|
|
++result;
|
|
} while (p);
|
|
return result;
|
|
}
|
|
|
|
//! <b>Requires</b>: this_node and other_node must be nodes inserted
|
|
//! in linear lists or be empty linear lists.
|
|
//!
|
|
//! <b>Effects</b>: Moves all the nodes previously chained after this_node after other_node
|
|
//! and vice-versa.
|
|
//!
|
|
//! <b>Complexity</b>: Constant
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
static void swap_trailing_nodes(node_ptr this_node, node_ptr other_node)
|
|
{
|
|
node_ptr this_nxt = NodeTraits::get_next(this_node);
|
|
node_ptr other_nxt = NodeTraits::get_next(other_node);
|
|
NodeTraits::set_next(this_node, other_nxt);
|
|
NodeTraits::set_next(other_node, this_nxt);
|
|
}
|
|
|
|
//! <b>Effects</b>: Reverses the order of elements in the list.
|
|
//!
|
|
//! <b>Returns</b>: The new first node of the list.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: This function is linear to the contained elements.
|
|
static node_ptr reverse(node_ptr p)
|
|
{
|
|
if(!p) return node_ptr();
|
|
node_ptr i = NodeTraits::get_next(p);
|
|
node_ptr first(p);
|
|
while(i){
|
|
node_ptr nxti(NodeTraits::get_next(i));
|
|
base_t::unlink_after(p);
|
|
NodeTraits::set_next(i, first);
|
|
first = i;
|
|
i = nxti;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
//! <b>Effects</b>: Moves the first n nodes starting at p to the end of the list.
|
|
//!
|
|
//! <b>Returns</b>: A pair containing the new first and last node of the list or
|
|
//! if there has been any movement, a null pair if n leads to no movement.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements plus the number moved positions.
|
|
static std::pair<node_ptr, node_ptr> move_first_n_backwards(node_ptr p, std::size_t n)
|
|
{
|
|
std::pair<node_ptr, node_ptr> ret;
|
|
//Null shift, or count() == 0 or 1, nothing to do
|
|
if(!n || !p || !NodeTraits::get_next(p)){
|
|
return ret;
|
|
}
|
|
|
|
node_ptr first = p;
|
|
bool end_found = false;
|
|
node_ptr new_last = node_ptr();
|
|
node_ptr old_last = node_ptr();
|
|
|
|
//Now find the new last node according to the shift count.
|
|
//If we find 0 before finding the new last node
|
|
//unlink p, shortcut the search now that we know the size of the list
|
|
//and continue.
|
|
for(std::size_t i = 1; i <= n; ++i){
|
|
new_last = first;
|
|
first = NodeTraits::get_next(first);
|
|
if(first == node_ptr()){
|
|
//Shortcut the shift with the modulo of the size of the list
|
|
n %= i;
|
|
if(!n) return ret;
|
|
old_last = new_last;
|
|
i = 0;
|
|
//Unlink p and continue the new first node search
|
|
first = p;
|
|
//unlink_after(new_last);
|
|
end_found = true;
|
|
}
|
|
}
|
|
|
|
//If the p has not been found in the previous loop, find it
|
|
//starting in the new first node and unlink it
|
|
if(!end_found){
|
|
old_last = base_t::get_previous_node(first, node_ptr());
|
|
}
|
|
|
|
//Now link p after the new last node
|
|
NodeTraits::set_next(old_last, p);
|
|
NodeTraits::set_next(new_last, node_ptr());
|
|
ret.first = first;
|
|
ret.second = new_last;
|
|
return ret;
|
|
}
|
|
|
|
//! <b>Effects</b>: Moves the first n nodes starting at p to the beginning of the list.
|
|
//!
|
|
//! <b>Returns</b>: A pair containing the new first and last node of the list or
|
|
//! if there has been any movement, a null pair if n leads to no movement.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the number of elements plus the number moved positions.
|
|
static std::pair<node_ptr, node_ptr> move_first_n_forward(node_ptr p, std::size_t n)
|
|
{
|
|
std::pair<node_ptr, node_ptr> ret;
|
|
//Null shift, or count() == 0 or 1, nothing to do
|
|
if(!n || !p || !NodeTraits::get_next(p))
|
|
return ret;
|
|
|
|
node_ptr first = p;
|
|
|
|
//Iterate until p is found to know where the current last node is.
|
|
//If the shift count is less than the size of the list, we can also obtain
|
|
//the position of the new last node after the shift.
|
|
node_ptr old_last(first), next_to_it, new_last(p);
|
|
std::size_t distance = 1;
|
|
while(!!(next_to_it = node_traits::get_next(old_last))){
|
|
if(distance++ > n)
|
|
new_last = node_traits::get_next(new_last);
|
|
old_last = next_to_it;
|
|
}
|
|
//If the shift was bigger or equal than the size, obtain the equivalent
|
|
//forward shifts and find the new last node.
|
|
if(distance <= n){
|
|
//Now find the equivalent forward shifts.
|
|
//Shortcut the shift with the modulo of the size of the list
|
|
std::size_t new_before_last_pos = (distance - (n % distance))% distance;
|
|
//If the shift is a multiple of the size there is nothing to do
|
|
if(!new_before_last_pos)
|
|
return ret;
|
|
|
|
for( new_last = p
|
|
; --new_before_last_pos
|
|
; new_last = node_traits::get_next(new_last)){
|
|
//empty
|
|
}
|
|
}
|
|
|
|
//Get the first new node
|
|
node_ptr new_first(node_traits::get_next(new_last));
|
|
//Now put the old beginning after the old end
|
|
NodeTraits::set_next(old_last, p);
|
|
NodeTraits::set_next(new_last, node_ptr());
|
|
ret.first = new_first;
|
|
ret.second = new_last;
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
/// @cond
|
|
|
|
template<class NodeTraits>
|
|
struct get_algo<LinearSListAlgorithms, NodeTraits>
|
|
{
|
|
typedef linear_slist_algorithms<NodeTraits> type;
|
|
};
|
|
|
|
/// @endcond
|
|
|
|
} //namespace intrusive
|
|
} //namespace boost
|
|
|
|
#include <boost/intrusive/detail/config_end.hpp>
|
|
|
|
#endif //BOOST_INTRUSIVE_LINEAR_SLIST_ALGORITHMS_HPP
|