mbedtls/yotta/data/example-selftest/README.md

77 lines
2.9 KiB
Markdown
Raw Normal View History

# mbed TLS Selftest Example
This application runs the various selftest function of individual mbed TLS components. It serves as a basic sanity check to verify operation of mbed TLS on your platform. In the future, a wider portion of the mbed TLS test suite will become part of this example application.
## Pre-requisites
To build and run this example the following requirements are necessary:
* A computer with the following software installed:
* [CMake](http://www.cmake.org/download/).
* [yotta](https://github.com/ARMmbed/yotta). Please note that **yotta has its own set of dependencies**, listed in the [installation instructions](http://armmbed.github.io/yotta/#installing-on-windows).
* [Python](https://www.python.org/downloads/).
* [ARM GCC toolchain](https://launchpad.net/gcc-arm-embedded).
* A serial terminal emulator (e.g. screen, pySerial, cu).
* An [FRDM-K64F](http://developer.mbed.org/platforms/FRDM-K64F/) development board, or another board supported by mbed OS (in which case you'll have to substitute frdm-k64f-gcc with the appropriate target in the instructions below).
* A micro-USB cable.
* If your OS is Windows, please follow the installation instructions [for the serial port driver](https://developer.mbed.org/handbook/Windows-serial-configuration).
## Getting started
1. Connect the FRDM-K64F to the computer with the micro-USB cable, being careful to use the "OpenSDA" connector on the target board.
2. Navigate to the mbedtls directory supplied with your release and open a terminal.
3. Set the yotta target:
```
yotta target frdm-k64f-gcc
```
4. Build mbedtls and the examples. This may take a long time if this is your first compilation:
```
$ yotta build
```
5. Copy `build/frdm-k64f-gcc/test/mbedtls-test-example-selftest.bin` to your mbed board and wait until the LED next to the USB port stops blinking.
6. Start the serial terminal emulator and connect to the virtual serial port presented by FRDM-K64F. For settings, use 115200 baud, 8N1, no flow control. **Warning:** for this example, the baud rate is not the default 9600, it is 115200.
7. Press the reset button on the board.
8. The output in the terminal window should look like:
```
{{timeout;40}}
{{host_test_name;default}}
{{description;mbed TLS selftest program}}
{{test_id;MBEDTLS_SELFTEST}}
{{start}}
SHA-224 test #1: passed
SHA-224 test #2: passed
SHA-224 test #3: passed
SHA-256 test #1: passed
SHA-256 test #2: passed
SHA-256 test #3: passed
[ ... several lines omitted ... ]
CTR_DRBG (PR = TRUE) : passed
CTR_DRBG (PR = FALSE): passed
HMAC_DRBG (PR = True) : passed
HMAC_DRBG (PR = False) : passed
ECP test #1 (constant op_count, base point G): passed
ECP test #2 (constant op_count, other point): passed
ENTROPY test: passed
[ All tests passed ]
{{success}}
{{end}}
```