2019-04-24 12:40:43 +00:00
|
|
|
/* ec_dsa.c - TinyCrypt implementation of EC-DSA */
|
|
|
|
|
|
|
|
/* Copyright (c) 2014, Kenneth MacKay
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* - Neither the name of Intel Corporation nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2019-05-09 09:24:11 +00:00
|
|
|
#if defined(MBEDTLS_USE_TINYCRYPT)
|
2019-04-24 12:40:43 +00:00
|
|
|
#include <tinycrypt/ecc.h>
|
|
|
|
#include <tinycrypt/ecc_dsa.h>
|
|
|
|
|
|
|
|
#if default_RNG_defined
|
|
|
|
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
|
|
|
|
#else
|
|
|
|
static uECC_RNG_Function g_rng_function = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void bits2int(uECC_word_t *native, const uint8_t *bits,
|
|
|
|
unsigned bits_size, uECC_Curve curve)
|
|
|
|
{
|
|
|
|
unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
|
|
|
|
unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
|
|
int shift;
|
|
|
|
uECC_word_t carry;
|
|
|
|
uECC_word_t *ptr;
|
|
|
|
|
|
|
|
if (bits_size > num_n_bytes) {
|
|
|
|
bits_size = num_n_bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
uECC_vli_clear(native, num_n_words);
|
|
|
|
uECC_vli_bytesToNative(native, bits, bits_size);
|
|
|
|
if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
shift = bits_size * 8 - curve->num_n_bits;
|
|
|
|
carry = 0;
|
|
|
|
ptr = native + num_n_words;
|
|
|
|
while (ptr-- > native) {
|
|
|
|
uECC_word_t temp = *ptr;
|
|
|
|
*ptr = (temp >> shift) | carry;
|
|
|
|
carry = temp << (uECC_WORD_BITS - shift);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reduce mod curve_n */
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
|
|
|
|
uECC_vli_sub(native, native, curve->n, num_n_words);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
|
|
|
|
unsigned hash_size, uECC_word_t *k, uint8_t *signature,
|
|
|
|
uECC_Curve curve)
|
|
|
|
{
|
|
|
|
|
|
|
|
uECC_word_t tmp[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t s[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t *k2[2] = {tmp, s};
|
|
|
|
uECC_word_t p[NUM_ECC_WORDS * 2];
|
|
|
|
uECC_word_t carry;
|
|
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
|
|
bitcount_t num_n_bits = curve->num_n_bits;
|
|
|
|
|
|
|
|
/* Make sure 0 < k < curve_n */
|
|
|
|
if (uECC_vli_isZero(k, num_words) ||
|
|
|
|
uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
carry = regularize_k(k, tmp, s, curve);
|
|
|
|
EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
|
|
|
|
if (uECC_vli_isZero(p, num_words)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If an RNG function was specified, get a random number
|
|
|
|
to prevent side channel analysis of k. */
|
|
|
|
if (!g_rng_function) {
|
|
|
|
uECC_vli_clear(tmp, num_n_words);
|
|
|
|
tmp[0] = 1;
|
|
|
|
}
|
|
|
|
else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Prevent side channel analysis of uECC_vli_modInv() to determine
|
|
|
|
bits of k / the private key by premultiplying by a random number */
|
|
|
|
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
|
|
|
|
uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
|
|
|
|
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
|
|
|
|
|
|
|
|
uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
|
|
|
|
|
|
|
|
/* tmp = d: */
|
|
|
|
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
|
|
|
|
|
|
|
|
s[num_n_words - 1] = 0;
|
|
|
|
uECC_vli_set(s, p, num_words);
|
|
|
|
uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
|
|
|
|
|
|
|
|
bits2int(tmp, message_hash, hash_size, curve);
|
|
|
|
uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
|
|
|
|
uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
|
|
|
|
if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
|
|
|
|
unsigned hash_size, uint8_t *signature, uECC_Curve curve)
|
|
|
|
{
|
|
|
|
uECC_word_t _random[2*NUM_ECC_WORDS];
|
|
|
|
uECC_word_t k[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t tries;
|
|
|
|
|
|
|
|
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
|
|
|
|
/* Generating _random uniformly at random: */
|
|
|
|
uECC_RNG_Function rng_function = uECC_get_rng();
|
|
|
|
if (!rng_function ||
|
|
|
|
!rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
|
|
|
|
uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
|
|
|
|
|
|
|
|
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
|
|
|
|
curve)) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bitcount_t smax(bitcount_t a, bitcount_t b)
|
|
|
|
{
|
|
|
|
return (a > b ? a : b);
|
|
|
|
}
|
|
|
|
|
|
|
|
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
|
|
|
|
unsigned hash_size, const uint8_t *signature,
|
|
|
|
uECC_Curve curve)
|
|
|
|
{
|
|
|
|
|
|
|
|
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t z[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t sum[NUM_ECC_WORDS * 2];
|
|
|
|
uECC_word_t rx[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t ry[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t tx[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t ty[NUM_ECC_WORDS];
|
|
|
|
uECC_word_t tz[NUM_ECC_WORDS];
|
|
|
|
const uECC_word_t *points[4];
|
|
|
|
const uECC_word_t *point;
|
|
|
|
bitcount_t num_bits;
|
|
|
|
bitcount_t i;
|
|
|
|
|
|
|
|
uECC_word_t _public[NUM_ECC_WORDS * 2];
|
|
|
|
uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
|
|
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
|
|
|
|
|
|
rx[num_n_words - 1] = 0;
|
|
|
|
r[num_n_words - 1] = 0;
|
|
|
|
s[num_n_words - 1] = 0;
|
|
|
|
|
|
|
|
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
|
|
|
|
uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
|
|
|
|
curve->num_bytes);
|
|
|
|
uECC_vli_bytesToNative(r, signature, curve->num_bytes);
|
|
|
|
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
|
|
|
|
|
|
|
|
/* r, s must not be 0. */
|
|
|
|
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* r, s must be < n. */
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
|
|
|
|
uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Calculate u1 and u2. */
|
|
|
|
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
|
|
|
|
u1[num_n_words - 1] = 0;
|
|
|
|
bits2int(u1, message_hash, hash_size, curve);
|
|
|
|
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
|
|
|
|
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
|
|
|
|
|
|
|
|
/* Calculate sum = G + Q. */
|
|
|
|
uECC_vli_set(sum, _public, num_words);
|
|
|
|
uECC_vli_set(sum + num_words, _public + num_words, num_words);
|
|
|
|
uECC_vli_set(tx, curve->G, num_words);
|
|
|
|
uECC_vli_set(ty, curve->G + num_words, num_words);
|
|
|
|
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
|
|
|
|
XYcZ_add(tx, ty, sum, sum + num_words, curve);
|
|
|
|
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
|
|
|
|
apply_z(sum, sum + num_words, z, curve);
|
|
|
|
|
|
|
|
/* Use Shamir's trick to calculate u1*G + u2*Q */
|
|
|
|
points[0] = 0;
|
|
|
|
points[1] = curve->G;
|
|
|
|
points[2] = _public;
|
|
|
|
points[3] = sum;
|
|
|
|
num_bits = smax(uECC_vli_numBits(u1, num_n_words),
|
|
|
|
uECC_vli_numBits(u2, num_n_words));
|
|
|
|
|
|
|
|
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
|
|
|
|
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
|
|
|
|
uECC_vli_set(rx, point, num_words);
|
|
|
|
uECC_vli_set(ry, point + num_words, num_words);
|
|
|
|
uECC_vli_clear(z, num_words);
|
|
|
|
z[0] = 1;
|
|
|
|
|
|
|
|
for (i = num_bits - 2; i >= 0; --i) {
|
|
|
|
uECC_word_t index;
|
|
|
|
curve->double_jacobian(rx, ry, z, curve);
|
|
|
|
|
|
|
|
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
|
|
|
|
point = points[index];
|
|
|
|
if (point) {
|
|
|
|
uECC_vli_set(tx, point, num_words);
|
|
|
|
uECC_vli_set(ty, point + num_words, num_words);
|
|
|
|
apply_z(tx, ty, z, curve);
|
|
|
|
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
|
|
|
|
XYcZ_add(tx, ty, rx, ry, curve);
|
|
|
|
uECC_vli_modMult_fast(z, z, tz, curve);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
|
|
|
|
apply_z(rx, ry, z, curve);
|
|
|
|
|
|
|
|
/* v = x1 (mod n) */
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
|
|
|
|
uECC_vli_sub(rx, rx, curve->n, num_n_words);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Accept only if v == r. */
|
|
|
|
return (int)(uECC_vli_equal(rx, r, num_words) == 0);
|
|
|
|
}
|
2019-04-29 11:29:52 +00:00
|
|
|
#else
|
2019-05-09 09:24:11 +00:00
|
|
|
typedef int mbedtls_dummy_tinycrypt_def;
|
|
|
|
#endif /* MBEDTLS_USE_TINYCRYPT */
|