mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2025-01-01 07:45:53 +00:00
797 lines
37 KiB
C
797 lines
37 KiB
C
|
/**
|
||
|
* \file psa/crypto_accel_driver.h
|
||
|
* \brief PSA cryptography accelerator driver module
|
||
|
*
|
||
|
* This header declares types and function signatures for cryptography
|
||
|
* drivers that access key material directly. This is meant for
|
||
|
* on-chip cryptography accelerators.
|
||
|
*
|
||
|
* This file is part of the PSA Crypto Driver Model, containing functions for
|
||
|
* driver developers to implement to enable hardware to be called in a
|
||
|
* standardized way by a PSA Cryptographic API implementation. The functions
|
||
|
* comprising the driver model, which driver authors implement, are not
|
||
|
* intended to be called by application developers.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Copyright (C) 2018, ARM Limited, All Rights Reserved
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
#ifndef PSA_CRYPTO_ACCEL_DRIVER_H
|
||
|
#define PSA_CRYPTO_ACCEL_DRIVER_H
|
||
|
|
||
|
#include "crypto_driver_common.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/** \defgroup driver_digest Message Digests
|
||
|
*
|
||
|
* Generation and authentication of Message Digests (aka hashes) must be done
|
||
|
* in parts using the following sequence:
|
||
|
* - `psa_drv_hash_setup_t`
|
||
|
* - `psa_drv_hash_update_t`
|
||
|
* - ...
|
||
|
* - `psa_drv_hash_finish_t`
|
||
|
*
|
||
|
* If a previously started Message Digest operation needs to be terminated
|
||
|
* before the `psa_drv_hash_finish_t` operation is complete, it should be aborted
|
||
|
* by the `psa_drv_hash_abort_t`. Failure to do so may result in allocated
|
||
|
* resources not being freed or in other undefined behavior.
|
||
|
*/
|
||
|
/**@{*/
|
||
|
|
||
|
/** \brief The hardware-specific hash context structure
|
||
|
*
|
||
|
* The contents of this structure are implementation dependent and are
|
||
|
* therefore not described here
|
||
|
*/
|
||
|
typedef struct psa_drv_hash_context_s psa_drv_hash_context_t;
|
||
|
|
||
|
/** \brief The function prototype for the start operation of a hash (message
|
||
|
* digest) operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_hash_<ALGO>_setup
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying hash function
|
||
|
*
|
||
|
* \param[in,out] p_context A structure that will contain the
|
||
|
* hardware-specific hash context
|
||
|
*
|
||
|
* \retval PSA_SUCCESS Success.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_hash_setup_t)(psa_drv_hash_context_t *p_context);
|
||
|
|
||
|
/** \brief The function prototype for the update operation of a hash (message
|
||
|
* digest) operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_hash_<ALGO>_update
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously-established hash operation to be
|
||
|
* continued
|
||
|
* \param[in] p_input A buffer containing the message to be appended
|
||
|
* to the hash operation
|
||
|
* \param[in] input_length The size in bytes of the input message buffer
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_hash_update_t)(psa_drv_hash_context_t *p_context,
|
||
|
const uint8_t *p_input,
|
||
|
size_t input_length);
|
||
|
|
||
|
/** \brief The prototype for the finish operation of a hash (message digest)
|
||
|
* operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_hash_<ALGO>_finish
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started hash operation to be
|
||
|
* fiinished
|
||
|
* \param[out] p_output A buffer where the generated digest will be
|
||
|
* placed
|
||
|
* \param[in] output_size The size in bytes of the buffer that has been
|
||
|
* allocated for the `p_output` buffer
|
||
|
* \param[out] p_output_length The number of bytes placed in `p_output` after
|
||
|
* success
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* Success.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_hash_finish_t)(psa_drv_hash_context_t *p_context,
|
||
|
uint8_t *p_output,
|
||
|
size_t output_size,
|
||
|
size_t *p_output_length);
|
||
|
|
||
|
/** \brief The function prototype for the abort operation of a hash (message
|
||
|
* digest) operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_hash_<ALGO>_abort
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the previously
|
||
|
* started hash operation to be aborted
|
||
|
*/
|
||
|
typedef void (*psa_drv_hash_abort_t)(psa_drv_hash_context_t *p_context);
|
||
|
|
||
|
/**@}*/
|
||
|
|
||
|
/** \defgroup transparent_mac Transparent Message Authentication Code
|
||
|
* Generation and authentication of Message Authentication Codes (MACs) using
|
||
|
* transparent keys can be done either as a single function call (via the
|
||
|
* `psa_drv_mac_transparent_generate_t` or `psa_drv_mac_transparent_verify_t`
|
||
|
* functions), or in parts using the following sequence:
|
||
|
* - `psa_drv_mac_transparent_setup_t`
|
||
|
* - `psa_drv_mac_transparent_update_t`
|
||
|
* - `psa_drv_mac_transparent_update_t`
|
||
|
* - ...
|
||
|
* - `psa_drv_mac_transparent_finish_t` or `psa_drv_mac_transparent_finish_verify_t`
|
||
|
*
|
||
|
* If a previously started Transparent MAC operation needs to be terminated, it
|
||
|
* should be done so by the `psa_drv_mac_transparent_abort_t`. Failure to do so may
|
||
|
* result in allocated resources not being freed or in other undefined
|
||
|
* behavior.
|
||
|
*
|
||
|
*/
|
||
|
/**@{*/
|
||
|
|
||
|
/** \brief The hardware-specific transparent-key MAC context structure
|
||
|
*
|
||
|
* The contents of this structure are implementation dependent and are
|
||
|
* therefore not described here.
|
||
|
*/
|
||
|
typedef struct psa_drv_mac_transparent_context_s psa_drv_mac_transparent_context_t;
|
||
|
|
||
|
/** \brief The function prototype for the setup operation of a
|
||
|
* transparent-key MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_setup
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying primitive, and `MAC_VARIANT`
|
||
|
* is the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in,out] p_context A structure that will contain the
|
||
|
* hardware-specific MAC context
|
||
|
* \param[in] p_key A buffer containing the cleartext key material
|
||
|
* to be used in the operation
|
||
|
* \param[in] key_length The size in bytes of the key material
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* Success.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_setup_t)(psa_drv_mac_transparent_context_t *p_context,
|
||
|
const uint8_t *p_key,
|
||
|
size_t key_length);
|
||
|
|
||
|
/** \brief The function prototype for the update operation of a
|
||
|
* transparent-key MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_update
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT`
|
||
|
* is the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously-established MAC operation to be
|
||
|
* continued
|
||
|
* \param[in] p_input A buffer containing the message to be appended
|
||
|
* to the MAC operation
|
||
|
* \param[in] input_length The size in bytes of the input message buffer
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_update_t)(psa_drv_mac_transparent_context_t *p_context,
|
||
|
const uint8_t *p_input,
|
||
|
size_t input_length);
|
||
|
|
||
|
/** \brief The function prototype for the finish operation of a
|
||
|
* transparent-key MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_finish
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT` is
|
||
|
* the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started MAC operation to be
|
||
|
* finished
|
||
|
* \param[out] p_mac A buffer where the generated MAC will be placed
|
||
|
* \param[in] mac_length The size in bytes of the buffer that has been
|
||
|
* allocated for the `p_mac` buffer
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* Success.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_finish_t)(psa_drv_mac_transparent_context_t *p_context,
|
||
|
uint8_t *p_mac,
|
||
|
size_t mac_length);
|
||
|
|
||
|
/** \brief The function prototype for the finish and verify operation of a
|
||
|
* transparent-key MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_finish_verify
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT` is
|
||
|
* the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started MAC operation to be
|
||
|
* verified and finished
|
||
|
* \param[in] p_mac A buffer containing the MAC that will be used
|
||
|
* for verification
|
||
|
* \param[in] mac_length The size in bytes of the data in the `p_mac`
|
||
|
* buffer
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* The operation completed successfully and the comparison matched
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_finish_verify_t)(psa_drv_mac_transparent_context_t *p_context,
|
||
|
const uint8_t *p_mac,
|
||
|
size_t mac_length);
|
||
|
|
||
|
/** \brief The function prototype for the abort operation for a previously
|
||
|
* started transparent-key MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_abort
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT` is
|
||
|
* the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started MAC operation to be
|
||
|
* aborted
|
||
|
*
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_abort_t)(psa_drv_mac_transparent_context_t *p_context);
|
||
|
|
||
|
/** \brief The function prototype for a one-shot operation of a transparent-key
|
||
|
* MAC operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT` is
|
||
|
* the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in] p_input A buffer containing the data to be MACed
|
||
|
* \param[in] input_length The length in bytes of the `p_input` data
|
||
|
* \param[in] p_key A buffer containing the key material to be used
|
||
|
* for the MAC operation
|
||
|
* \param[in] key_length The length in bytes of the `p_key` data
|
||
|
* \param[in] alg The algorithm to be performed
|
||
|
* \param[out] p_mac The buffer where the resulting MAC will be placed
|
||
|
* upon success
|
||
|
* \param[in] mac_length The length in bytes of the `p_mac` buffer
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_t)(const uint8_t *p_input,
|
||
|
size_t input_length,
|
||
|
const uint8_t *p_key,
|
||
|
size_t key_length,
|
||
|
psa_algorithm_t alg,
|
||
|
uint8_t *p_mac,
|
||
|
size_t mac_length);
|
||
|
|
||
|
/** \brief The function prototype for a one-shot operation of a transparent-key
|
||
|
* MAC Verify operation
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_mac_transparent_<ALGO>_<MAC_VARIANT>_verify
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the underlying algorithm, and `MAC_VARIANT` is
|
||
|
* the specific variant of a MAC operation (such as HMAC or CMAC)
|
||
|
*
|
||
|
* \param[in] p_input A buffer containing the data to be MACed
|
||
|
* \param[in] input_length The length in bytes of the `p_input` data
|
||
|
* \param[in] p_key A buffer containing the key material to be used
|
||
|
* for the MAC operation
|
||
|
* \param[in] key_length The length in bytes of the `p_key` data
|
||
|
* \param[in] alg The algorithm to be performed
|
||
|
* \param[in] p_mac The MAC data to be compared
|
||
|
* \param[in] mac_length The length in bytes of the `p_mac` buffer
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* The operation completed successfully and the comparison matched
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_mac_transparent_verify_t)(const uint8_t *p_input,
|
||
|
size_t input_length,
|
||
|
const uint8_t *p_key,
|
||
|
size_t key_length,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *p_mac,
|
||
|
size_t mac_length);
|
||
|
/**@}*/
|
||
|
|
||
|
/** \defgroup transparent_cipher Transparent Block Cipher
|
||
|
* Encryption and Decryption using transparent keys in block modes other than
|
||
|
* ECB must be done in multiple parts, using the following flow:
|
||
|
* - `psa_drv_cipher_transparent_setup_t`
|
||
|
* - `psa_drv_cipher_transparent_set_iv_t` (optional depending upon block mode)
|
||
|
* - `psa_drv_cipher_transparent_update_t`
|
||
|
* - ...
|
||
|
* - `psa_drv_cipher_transparent_finish_t`
|
||
|
|
||
|
* If a previously started Transparent Cipher operation needs to be terminated,
|
||
|
* it should be done so by the `psa_drv_cipher_transparent_abort_t`. Failure to do
|
||
|
* so may result in allocated resources not being freed or in other undefined
|
||
|
* behavior.
|
||
|
*/
|
||
|
/**@{*/
|
||
|
|
||
|
/** \brief The hardware-specific transparent-key Cipher context structure
|
||
|
*
|
||
|
* The contents of this structure are implementation dependent and are
|
||
|
* therefore not described here.
|
||
|
*/
|
||
|
typedef struct psa_drv_cipher_transparent_context_s psa_drv_cipher_transparent_context_t;
|
||
|
|
||
|
/** \brief The function prototype for the setup operation of transparent-key
|
||
|
* block cipher operations.
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* conventions:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_setup_<CIPHER_NAME>_<MODE>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where
|
||
|
* - `CIPHER_NAME` is the name of the underlying block cipher (i.e. AES or DES)
|
||
|
* - `MODE` is the block mode of the cipher operation (i.e. CBC or CTR)
|
||
|
* or for stream ciphers:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_setup_<CIPHER_NAME>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `CIPHER_NAME` is the name of a stream cipher (i.e. RC4)
|
||
|
*
|
||
|
* \param[in,out] p_context A structure that will contain the
|
||
|
* hardware-specific cipher context
|
||
|
* \param[in] direction Indicates if the operation is an encrypt or a
|
||
|
* decrypt
|
||
|
* \param[in] p_key_data A buffer containing the cleartext key material
|
||
|
* to be used in the operation
|
||
|
* \param[in] key_data_size The size in bytes of the key material
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_cipher_transparent_setup_t)(psa_drv_cipher_transparent_context_t *p_context,
|
||
|
psa_encrypt_or_decrypt_t direction,
|
||
|
const uint8_t *p_key_data,
|
||
|
size_t key_data_size);
|
||
|
|
||
|
/** \brief The function prototype for the set initialization vector operation
|
||
|
* of transparent-key block cipher operations
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_set_iv_<CIPHER_NAME>_<MODE>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where
|
||
|
* - `CIPHER_NAME` is the name of the underlying block cipher (i.e. AES or DES)
|
||
|
* - `MODE` is the block mode of the cipher operation (i.e. CBC or CTR)
|
||
|
*
|
||
|
* \param[in,out] p_context A structure that contains the previously setup
|
||
|
* hardware-specific cipher context
|
||
|
* \param[in] p_iv A buffer containing the initialization vecotr
|
||
|
* \param[in] iv_length The size in bytes of the contents of `p_iv`
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_cipher_transparent_set_iv_t)(psa_drv_cipher_transparent_context_t *p_context,
|
||
|
const uint8_t *p_iv,
|
||
|
size_t iv_length);
|
||
|
|
||
|
/** \brief The function prototype for the update operation of transparent-key
|
||
|
* block cipher operations.
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_update_<CIPHER_NAME>_<MODE>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where
|
||
|
* - `CIPHER_NAME` is the name of the underlying block cipher (i.e. AES or DES)
|
||
|
* - `MODE` is the block mode of the cipher operation (i.e. CBC or CTR)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started cipher operation
|
||
|
* \param[in] p_input A buffer containing the data to be
|
||
|
* encrypted or decrypted
|
||
|
* \param[in] input_size The size in bytes of the `p_input` buffer
|
||
|
* \param[out] p_output A caller-allocated buffer where the
|
||
|
* generated output will be placed
|
||
|
* \param[in] output_size The size in bytes of the `p_output` buffer
|
||
|
* \param[out] p_output_length After completion, will contain the number
|
||
|
* of bytes placed in the `p_output` buffer
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_cipher_transparent_update_t)(psa_drv_cipher_transparent_context_t *p_context,
|
||
|
const uint8_t *p_input,
|
||
|
size_t input_size,
|
||
|
uint8_t *p_output,
|
||
|
size_t output_size,
|
||
|
size_t *p_output_length);
|
||
|
|
||
|
/** \brief The function prototype for the finish operation of transparent-key
|
||
|
* block cipher operations.
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_finish_<CIPHER_NAME>_<MODE>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where
|
||
|
* - `CIPHER_NAME` is the name of the underlying block cipher (i.e. AES or DES)
|
||
|
* - `MODE` is the block mode of the cipher operation (i.e. CBC or CTR)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started cipher operation
|
||
|
* \param[out] p_output A caller-allocated buffer where the generated
|
||
|
* output will be placed
|
||
|
* \param[in] output_size The size in bytes of the `p_output` buffer
|
||
|
* \param[out] p_output_length After completion, will contain the number of
|
||
|
* bytes placed in the `p_output` buffer
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_cipher_transparent_finish_t)(psa_drv_cipher_transparent_context_t *p_context,
|
||
|
uint8_t *p_output,
|
||
|
size_t output_size,
|
||
|
size_t *p_output_length);
|
||
|
|
||
|
/** \brief The function prototype for the abort operation of transparent-key
|
||
|
* block cipher operations.
|
||
|
*
|
||
|
* Functions that implement the following prototype should be named in the
|
||
|
* following convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_cipher_transparent_abort_<CIPHER_NAME>_<MODE>
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where
|
||
|
* - `CIPHER_NAME` is the name of the underlying block cipher (i.e. AES or DES)
|
||
|
* - `MODE` is the block mode of the cipher operation (i.e. CBC or CTR)
|
||
|
*
|
||
|
* \param[in,out] p_context A hardware-specific structure for the
|
||
|
* previously started cipher operation
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_cipher_transparent_abort_t)(psa_drv_cipher_transparent_context_t *p_context);
|
||
|
|
||
|
/**@}*/
|
||
|
|
||
|
/** \defgroup aead_transparent AEAD Transparent
|
||
|
*
|
||
|
* Authenticated Encryption with Additional Data (AEAD) operations with
|
||
|
* transparent keys must be done in one function call. While this creates a
|
||
|
* burden for implementers as there must be sufficient space in memory for the
|
||
|
* entire message, it prevents decrypted data from being made available before
|
||
|
* the authentication operation is complete and the data is known to be
|
||
|
* authentic.
|
||
|
*/
|
||
|
/**@{*/
|
||
|
|
||
|
/** Process an authenticated encryption operation using an opaque key.
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_aead_<ALGO>_encrypt
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the AEAD algorithm
|
||
|
*
|
||
|
* \param[in] p_key A pointer to the key material
|
||
|
* \param[in] key_length The size in bytes of the key material
|
||
|
* \param[in] alg The AEAD algorithm to compute
|
||
|
* (\c PSA_ALG_XXX value such that
|
||
|
* #PSA_ALG_IS_AEAD(`alg`) is true)
|
||
|
* \param[in] nonce Nonce or IV to use
|
||
|
* \param[in] nonce_length Size of the `nonce` buffer in bytes
|
||
|
* \param[in] additional_data Additional data that will be MACed
|
||
|
* but not encrypted.
|
||
|
* \param[in] additional_data_length Size of `additional_data` in bytes
|
||
|
* \param[in] plaintext Data that will be MACed and
|
||
|
* encrypted.
|
||
|
* \param[in] plaintext_length Size of `plaintext` in bytes
|
||
|
* \param[out] ciphertext Output buffer for the authenticated and
|
||
|
* encrypted data. The additional data is
|
||
|
* not part of this output. For algorithms
|
||
|
* where the encrypted data and the
|
||
|
* authentication tag are defined as
|
||
|
* separate outputs, the authentication
|
||
|
* tag is appended to the encrypted data.
|
||
|
* \param[in] ciphertext_size Size of the `ciphertext` buffer in
|
||
|
* bytes
|
||
|
* This must be at least
|
||
|
* #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(`alg`,
|
||
|
* `plaintext_length`).
|
||
|
* \param[out] ciphertext_length On success, the size of the output in
|
||
|
* the `ciphertext` buffer
|
||
|
*
|
||
|
* \retval #PSA_SUCCESS
|
||
|
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_aead_transparent_encrypt_t)(const uint8_t *p_key,
|
||
|
size_t key_length,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *nonce,
|
||
|
size_t nonce_length,
|
||
|
const uint8_t *additional_data,
|
||
|
size_t additional_data_length,
|
||
|
const uint8_t *plaintext,
|
||
|
size_t plaintext_length,
|
||
|
uint8_t *ciphertext,
|
||
|
size_t ciphertext_size,
|
||
|
size_t *ciphertext_length);
|
||
|
|
||
|
/** Process an authenticated decryption operation using an opaque key.
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_aead_<ALGO>_decrypt
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the AEAD algorithm
|
||
|
* \param[in] p_key A pointer to the key material
|
||
|
* \param[in] key_length The size in bytes of the key material
|
||
|
* \param[in] alg The AEAD algorithm to compute
|
||
|
* (\c PSA_ALG_XXX value such that
|
||
|
* #PSA_ALG_IS_AEAD(`alg`) is true)
|
||
|
* \param[in] nonce Nonce or IV to use
|
||
|
* \param[in] nonce_length Size of the `nonce` buffer in bytes
|
||
|
* \param[in] additional_data Additional data that has been MACed
|
||
|
* but not encrypted
|
||
|
* \param[in] additional_data_length Size of `additional_data` in bytes
|
||
|
* \param[in] ciphertext Data that has been MACed and
|
||
|
* encrypted
|
||
|
* For algorithms where the encrypted data
|
||
|
* and the authentication tag are defined
|
||
|
* as separate inputs, the buffer must
|
||
|
* contain the encrypted data followed by
|
||
|
* the authentication tag.
|
||
|
* \param[in] ciphertext_length Size of `ciphertext` in bytes
|
||
|
* \param[out] plaintext Output buffer for the decrypted data
|
||
|
* \param[in] plaintext_size Size of the `plaintext` buffer in
|
||
|
* bytes
|
||
|
* This must be at least
|
||
|
* #PSA_AEAD_DECRYPT_OUTPUT_SIZE(`alg`,
|
||
|
* `ciphertext_length`).
|
||
|
* \param[out] plaintext_length On success, the size of the output
|
||
|
* in the \b plaintext buffer
|
||
|
*
|
||
|
* \retval #PSA_SUCCESS
|
||
|
* Success.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_aead_transparent_decrypt_t)(const uint8_t *p_key,
|
||
|
size_t key_length,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *nonce,
|
||
|
size_t nonce_length,
|
||
|
const uint8_t *additional_data,
|
||
|
size_t additional_data_length,
|
||
|
const uint8_t *ciphertext,
|
||
|
size_t ciphertext_length,
|
||
|
uint8_t *plaintext,
|
||
|
size_t plaintext_size,
|
||
|
size_t *plaintext_length);
|
||
|
|
||
|
/**@}*/
|
||
|
|
||
|
/** \defgroup transparent_asymmetric Transparent Asymmetric Cryptography
|
||
|
*
|
||
|
* Since the amount of data that can (or should) be encrypted or signed using
|
||
|
* asymmetric keys is limited by the key size, asymmetric key operations using
|
||
|
* transparent keys must be done in single function calls.
|
||
|
*/
|
||
|
/**@{*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \brief A function that signs a hash or short message with a transparent
|
||
|
* asymmetric private key
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_asymmetric_<ALGO>_sign
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the signing algorithm
|
||
|
*
|
||
|
* \param[in] p_key A buffer containing the private key
|
||
|
* material
|
||
|
* \param[in] key_size The size in bytes of the `p_key` data
|
||
|
* \param[in] alg A signature algorithm that is compatible
|
||
|
* with the type of `p_key`
|
||
|
* \param[in] p_hash The hash or message to sign
|
||
|
* \param[in] hash_length Size of the `p_hash` buffer in bytes
|
||
|
* \param[out] p_signature Buffer where the signature is to be written
|
||
|
* \param[in] signature_size Size of the `p_signature` buffer in bytes
|
||
|
* \param[out] p_signature_length On success, the number of bytes
|
||
|
* that make up the returned signature value
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_asymmetric_transparent_sign_t)(const uint8_t *p_key,
|
||
|
size_t key_size,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *p_hash,
|
||
|
size_t hash_length,
|
||
|
uint8_t *p_signature,
|
||
|
size_t signature_size,
|
||
|
size_t *p_signature_length);
|
||
|
|
||
|
/**
|
||
|
* \brief A function that verifies the signature a hash or short message using
|
||
|
* a transparent asymmetric public key
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_asymmetric_<ALGO>_verify
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the signing algorithm
|
||
|
*
|
||
|
* \param[in] p_key A buffer containing the public key material
|
||
|
* \param[in] key_size The size in bytes of the `p_key` data
|
||
|
* \param[in] alg A signature algorithm that is compatible with
|
||
|
* the type of `key`
|
||
|
* \param[in] p_hash The hash or message whose signature is to be
|
||
|
* verified
|
||
|
* \param[in] hash_length Size of the `p_hash` buffer in bytes
|
||
|
* \param[in] p_signature Buffer containing the signature to verify
|
||
|
* \param[in] signature_length Size of the `p_signature` buffer in bytes
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
* The signature is valid.
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_asymmetric_transparent_verify_t)(const uint8_t *p_key,
|
||
|
size_t key_size,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *p_hash,
|
||
|
size_t hash_length,
|
||
|
const uint8_t *p_signature,
|
||
|
size_t signature_length);
|
||
|
|
||
|
/**
|
||
|
* \brief A function that encrypts a short message with a transparent
|
||
|
* asymmetric public key
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_asymmetric_<ALGO>_encrypt
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the encryption algorithm
|
||
|
*
|
||
|
* \param[in] p_key A buffer containing the public key material
|
||
|
* \param[in] key_size The size in bytes of the `p_key` data
|
||
|
* \param[in] alg An asymmetric encryption algorithm that is
|
||
|
* compatible with the type of `key`
|
||
|
* \param[in] p_input The message to encrypt
|
||
|
* \param[in] input_length Size of the `p_input` buffer in bytes
|
||
|
* \param[in] p_salt A salt or label, if supported by the
|
||
|
* encryption algorithm
|
||
|
* If the algorithm does not support a
|
||
|
* salt, pass `NULL`
|
||
|
* If the algorithm supports an optional
|
||
|
* salt and you do not want to pass a salt,
|
||
|
* pass `NULL`.
|
||
|
* For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
|
||
|
* supported.
|
||
|
* \param[in] salt_length Size of the `p_salt` buffer in bytes
|
||
|
* If `p_salt` is `NULL`, pass 0.
|
||
|
* \param[out] p_output Buffer where the encrypted message is to
|
||
|
* be written
|
||
|
* \param[in] output_size Size of the `p_output` buffer in bytes
|
||
|
* \param[out] p_output_length On success, the number of bytes
|
||
|
* that make up the returned output
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_asymmetric_transparent_encrypt_t)(const uint8_t *p_key,
|
||
|
size_t key_size,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *p_input,
|
||
|
size_t input_length,
|
||
|
const uint8_t *p_salt,
|
||
|
size_t salt_length,
|
||
|
uint8_t *p_output,
|
||
|
size_t output_size,
|
||
|
size_t *p_output_length);
|
||
|
|
||
|
/**
|
||
|
* \brief Decrypt a short message with a transparent asymmetric private key
|
||
|
*
|
||
|
* Functions that implement the prototype should be named in the following
|
||
|
* convention:
|
||
|
* ~~~~~~~~~~~~~{.c}
|
||
|
* psa_drv_asymmetric_<ALGO>_decrypt
|
||
|
* ~~~~~~~~~~~~~
|
||
|
* Where `ALGO` is the name of the encryption algorithm
|
||
|
*
|
||
|
* \param[in] p_key A buffer containing the private key material
|
||
|
* \param[in] key_size The size in bytes of the `p_key` data
|
||
|
* \param[in] alg An asymmetric encryption algorithm that is
|
||
|
* compatible with the type of `key`
|
||
|
* \param[in] p_input The message to decrypt
|
||
|
* \param[in] input_length Size of the `p_input` buffer in bytes
|
||
|
* \param[in] p_salt A salt or label, if supported by the
|
||
|
* encryption algorithm
|
||
|
* If the algorithm does not support a
|
||
|
* salt, pass `NULL`.
|
||
|
* If the algorithm supports an optional
|
||
|
* salt and you do not want to pass a salt,
|
||
|
* pass `NULL`.
|
||
|
* For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
|
||
|
* supported
|
||
|
* \param[in] salt_length Size of the `p_salt` buffer in bytes
|
||
|
* If `p_salt` is `NULL`, pass 0
|
||
|
* \param[out] p_output Buffer where the decrypted message is to
|
||
|
* be written
|
||
|
* \param[in] output_size Size of the `p_output` buffer in bytes
|
||
|
* \param[out] p_output_length On success, the number of bytes
|
||
|
* that make up the returned output
|
||
|
*
|
||
|
* \retval PSA_SUCCESS
|
||
|
*/
|
||
|
typedef psa_status_t (*psa_drv_asymmetric_transparent_decrypt_t)(const uint8_t *p_key,
|
||
|
size_t key_size,
|
||
|
psa_algorithm_t alg,
|
||
|
const uint8_t *p_input,
|
||
|
size_t input_length,
|
||
|
const uint8_t *p_salt,
|
||
|
size_t salt_length,
|
||
|
uint8_t *p_output,
|
||
|
size_t output_size,
|
||
|
size_t *p_output_length);
|
||
|
|
||
|
/**@}*/
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* PSA_CRYPTO_ACCEL_DRIVER_H */
|