PK: support for opaque keys

Add a new key pair object type: MBEDTLS_PK_OPAQUE, intended for
implementations of asymmetric cryptography operations that call an
external cryptographic module.

External cryptographic module engines must implement the API described
by a mbedtls_pk_info_t structure and, usually, a custom setup function.

Document the fields of the mbedtls_pk_info_t structure and the
requirements on a PK engine. Also document non-obvious aspects of the
behavior of the pk interface functions on opaque keys.

Change the interface of check_pair_func to take a pointer to a full
mbedtls_pk_context as its pub argument, and not just the data part of
the context. This is necessary because when prv is opaque, pub may
legitimately be of a different type (typically prv would be opaque and
pub would be transparent).
This commit is contained in:
Gilles Peskine 2017-11-03 19:20:27 +01:00 committed by Andrzej Kurek
parent 5cc7bc596d
commit 02768b436b
8 changed files with 766 additions and 93 deletions

View file

@ -74,7 +74,7 @@
* X509 2 20
* PKCS5 2 4 (Started from top)
* DHM 3 9
* PK 3 14 (Started from top)
* PK 3 17 (Started from top)
* RSA 4 10
* ECP 4 8 (Started from top)
* MD 5 4

View file

@ -3,7 +3,7 @@
*
* \brief Public Key cryptography abstraction layer
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Copyright (C) 2006-2017, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
@ -66,6 +66,9 @@
#define MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE -0x3A00 /**< Elliptic curve is unsupported (only NIST curves are supported). */
#define MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE -0x3980 /**< Unavailable feature, e.g. RSA disabled for RSA key. */
#define MBEDTLS_ERR_PK_SIG_LEN_MISMATCH -0x3900 /**< The signature is valid but its length is less than expected. */
#define MBEDTLS_ERR_PK_INVALID_SIGNATURE -0x3880 /**< Invalid signature */
#define MBEDTLS_ERR_PK_BUFFER_TOO_SMALL -0x3800 /**< Output buffer too small */
#define MBEDTLS_ERR_PK_NOT_PERMITTED -0x3780 /**< Operation not permitted */
/**@}*/
@ -87,6 +90,10 @@ typedef enum {
MBEDTLS_PK_ECDSA, /**< ECC key pair with ECDSA context */
MBEDTLS_PK_RSA_ALT, /**< RSA (alternative implementation) */
MBEDTLS_PK_RSASSA_PSS, /**< RSA key pair; same context as MBEDTLS_PK_RSA, but used to represent keys with the algorithm identifier id-RSASSA-PSS */
/** Opaque key pair (cryptographic material held in an external module).
* This may be an RSA or ECC key or a key of an unrecognized type. Call
* \c mbedtls_pk_can_do() to check whether a key is of a recognized type. */
MBEDTLS_PK_OPAQUE,
} mbedtls_pk_type_t;
/**
@ -216,6 +223,12 @@ void mbedtls_pk_free( mbedtls_pk_context *ctx );
* MBEDTLS_ERR_PK_BAD_INPUT_DATA on invalid input,
* MBEDTLS_ERR_PK_ALLOC_FAILED on allocation failure.
*
* \note Engines that implement of opaque keys may offer an
* alternative setup function that take engine-dependent
* parameters. If such a function exists, call it
* instead of mbedtls_pk_setup. The implementation-specific
* setup function should call mbedtls_pk_setup internally.
*
* \note For contexts holding an RSA-alt key pair, use
* \c mbedtls_pk_setup_rsa_alt() instead.
*/
@ -448,7 +461,13 @@ int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
* is ill-formed.
* * MBEDTLS_ERR_PK_TYPE_MISMATCH if the contexts cannot
* represent keys of the same type.
* * MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE if it is impossible
* to determine whether the keys match. This is guaranteed
* not to happen if \c prv is a transparent key pair.
* * Or a type-specific error code.
*
* \note Opaque key types may not implement this function.
* An opaque \c pub never matches a transparent \c prv.
*/
int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv );
@ -481,6 +500,12 @@ const char * mbedtls_pk_get_name( const mbedtls_pk_context *ctx );
* \param ctx Context to use
*
* \return Type on success, or MBEDTLS_PK_NONE
*
* \note This function returns the type of the key pair object. The
* type encodes the representation of the object as well as
* the operations that it can be used for. To test whether
* the object represents a key of a recognized type such
* as RSA or ECDSA, call \c mbedtls_pk_can_do().
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx );

View file

@ -32,58 +32,196 @@
#include "pk.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Methods that opaque key pair objects must implement.
*
* Engines that interface with external cryptographic processors must
* implement this interface. Platform-specific hardware accelerators
* that can be used for all keys of a given type should use alternative
* ("xxx_alt") interfaces instead. This interface allows using different
* engines for each key.
*
* An engine for asymmetric cryptography must implement the interface
* described in this structure. The interface for the engine may be
* exposed in one of two ways:
*
* - Declare the mbedtls_pk_info_t structure and instruct users to call
* mbedtls_pk_setup with that structure.
* - Keep the mbedtls_pk_info_t structure hidden and declare a function
* to call instead of mbedtls_pk_setup. This function should have an
* interface of the form
* `int mbedtls_pk_setup_myengine(mbedtls_pk_context *, ...)`
* where the extra parameters depend on the engine, e.g. handles to keys
* stored in an external cryptographic module.
*
* Unless otherwise indicated, functions returning int must return an
* Mbed TLS status code, either 0 for success or a negative value to indicate
* an error. It is recommended to use the MBEDTLS_ERR_PK_XXX error codes
* defined in pk.h.
*
* Some methods are optional; this is clearly indicated in their description.
* If a method is optional, then an opaque key implementation may put NULL
* in the corresponding field. The corresponding function in pk.h will
* return MBEDTLS_ERR_PK_TYPE_MISMATCH in this case.
*
* \note If you are using the PK interface to perform operations on
* keys, call the functions in pk.h. The interface in this file should only
* be used by implementers of opaque key engines.
*/
struct mbedtls_pk_info_t
{
/** Key pair type with indication of supported algorithms */
/** Key pair type.
*
* mbedtls_pk_get_type() returns this value.
*
* For transparent keys, this contains an indication of supported
* algorithms. For opaque keys, this is \c MBEDTLS_PK_OPAQUE. */
mbedtls_pk_type_t type;
/** Type name */
/** Type name.
*
* mbedtls_pk_get_name() returns this value. It must be a
* null-terminated string.
*
* For transparent keys, this reflects the key type. For opaque keys,
* this reflects the cryptographic module driver. */
const char *name;
/** Get key size in bits */
/** Get key size in bits.
*
* mbedtls_pk_get_bitlen() returns this value.
*
* This function cannot fail. */
size_t (*get_bitlen)( const void *ctx );
/** Tell if the context implements this type (e.g. ECKEY can do ECDSA) */
/** Tell if the context implements this type (e.g.\ ECKEY can do ECDSA).
*
* mbedtls_pk_can_do() calls this function.
*
* This function is only based on the key type. It does not take any
* usage restrictions into account. */
int (*can_do)( const void * ctx, mbedtls_pk_type_t type );
/** Verify signature */
/** Verify signature
*
* mbedtls_pk_verify() calls this function.
*
* Opaque implementations may omit this method if they do not support
* signature verification. */
int (*verify_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len );
/** Make signature */
/** Make signature
*
* mbedtls_pk_sign() calls this function.
*
* Assume that the buffer \c sig has room for
* \c signature_size_func(ctx) bytes.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* signature. */
int (*sign_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Decrypt message */
/** Decrypt message
*
* mbedtls_pk_decrypt() calls this function.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* decryption. */
int (*decrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Encrypt message */
/** Encrypt message
*
* mbedtls_pk_decrypt() calls this function.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* encryption. */
int (*encrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Check public-private key pair */
int (*check_pair_func)( const void *pub, const void *prv );
/** Check public-private key pair
*
* mbedtls_pk_check_pair() calls this function on the private key pair
* object \c prv. The other argument \c pub may be of any type, but it
* is guaranteed to be initialized.
*
* Opaque implementations may omit this method. */
int (*check_pair_func)( const mbedtls_pk_context *pub, const void *prv );
/** Allocate a new context */
/** Allocate a new context
*
* mbedtls_pk_setup() calls this function.
*
* If this function returns NULL, the allocation is considered to
* have failed and the the object remains uninitialized.
*
* Opaque implementations may omit this method. In this case,
* mbedtls_pk_setup will set the \c pk_ctx field of the mbedtls_pk_context
* object to NULL, and it is up to an engine-specific setup function to
* initialize the \c pk_ctx field. This is useful if the size of the
* memory depends on extra parameters passed to the engine-specific setup
* function. */
void * (*ctx_alloc_func)( void );
/** Free the given context */
/** Free the given context
*
* mbedtls_pk_free() calls this function. It must free the data allocated
* by \b ctx_alloc_func as well as any other resource that belongs to
* the object.
* */
void (*ctx_free_func)( void *ctx );
/** Interface with the debug module */
/** Interface with the debug module
*
* mbedtls_pk_debug() calls this function.
*
* Opaque implementations may omit this method. */
void (*debug_func)( const void *ctx, mbedtls_pk_debug_item *items );
/** Signature size */
/** Signature size
*
* mbedtls_pk_signature_size() returns this value.
*
* Opaque implementations may omit this method. In this case, the value
* returned by \c get_bitlen (rounded up to a whole number of bytes)
* is used instead. */
size_t (*signature_size_func)( const void *ctx );
};
#ifdef __cplusplus
}
#endif
#endif /* MBEDTLS_PK_INFO_H */

View file

@ -288,6 +288,12 @@ void mbedtls_strerror( int ret, char *buf, size_t buflen )
mbedtls_snprintf( buf, buflen, "PK - Unavailable feature, e.g. RSA disabled for RSA key" );
if( use_ret == -(MBEDTLS_ERR_PK_SIG_LEN_MISMATCH) )
mbedtls_snprintf( buf, buflen, "PK - The signature is valid but its length is less than expected" );
if( use_ret == -(MBEDTLS_ERR_PK_INVALID_SIGNATURE) )
mbedtls_snprintf( buf, buflen, "PK - Invalid signature" );
if( use_ret == -(MBEDTLS_ERR_PK_BUFFER_TOO_SMALL) )
mbedtls_snprintf( buf, buflen, "PK - Output buffer too small" );
if( use_ret == -(MBEDTLS_ERR_PK_NOT_PERMITTED) )
mbedtls_snprintf( buf, buflen, "PK - Operation not permitted" );
#endif /* MBEDTLS_PK_C */
#if defined(MBEDTLS_PKCS12_C)

View file

@ -94,6 +94,7 @@ const mbedtls_pk_info_t * mbedtls_pk_info_from_type( mbedtls_pk_type_t pk_type )
return( &mbedtls_ecdsa_info );
#endif
/* MBEDTLS_PK_RSA_ALT omitted on purpose */
/* MBEDTLS_PK_OPAQUE omitted on purpose: they can't be built by parsing */
default:
return( NULL );
}
@ -107,8 +108,11 @@ int mbedtls_pk_setup( mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info )
if( ctx == NULL || info == NULL || ctx->pk_info != NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( ( ctx->pk_ctx = info->ctx_alloc_func() ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
if( info->ctx_alloc_func != NULL )
{
if( ( ctx->pk_ctx = info->ctx_alloc_func( ) ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
}
ctx->pk_info = info;
@ -312,24 +316,31 @@ int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv )
{
if( pub == NULL || pub->pk_info == NULL ||
prv == NULL || prv->pk_info == NULL ||
prv->pk_info->check_pair_func == NULL )
prv == NULL || prv->pk_info == NULL )
{
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
}
if( pub->pk_info == prv->pk_info && pub->pk_ctx == prv->pk_ctx )
return( 0 );
if( prv->pk_info->check_pair_func == NULL )
{
return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE );
}
if( prv->pk_info->type == MBEDTLS_PK_RSA_ALT )
{
if( pub->pk_info->type != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
else
else if( prv->pk_info->type != MBEDTLS_PK_OPAQUE )
{
if( pub->pk_info != prv->pk_info )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
return( prv->pk_info->check_pair_func( pub->pk_ctx, prv->pk_ctx ) );
return( prv->pk_info->check_pair_func( pub, prv->pk_ctx ) );
}
/*
@ -384,7 +395,9 @@ const char *mbedtls_pk_get_name( const mbedtls_pk_context *ctx )
}
/*
* Access the PK type
* Access the PK type.
* For an opaque key pair object, this does not give any information on the
* underlying cryptographic material.
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx )
{

View file

@ -148,10 +148,9 @@ static int rsa_encrypt_wrap( void *ctx,
ilen, input, output ) );
}
static int rsa_check_pair_wrap( const void *pub, const void *prv )
static int rsa_check_pair_wrap( const mbedtls_pk_context *pub, const void *prv )
{
return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub,
(const mbedtls_rsa_context *) prv ) );
return( mbedtls_rsa_check_pub_priv( pub->pk_ctx, prv ) );
}
static void *rsa_alloc_wrap( void )
@ -272,10 +271,9 @@ static size_t ecdsa_signature_size( const void *ctx_arg )
#endif /* MBEDTLS_ECDSA_C */
static int eckey_check_pair( const void *pub, const void *prv )
static int eckey_check_pair( const mbedtls_pk_context *pub, const void *prv )
{
return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub,
(const mbedtls_ecp_keypair *) prv ) );
return( mbedtls_ecp_check_pub_priv( pub->pk_ctx, prv ) );
}
static void *eckey_alloc_wrap( void )
@ -472,14 +470,14 @@ static int rsa_alt_decrypt_wrap( void *ctx,
}
#if defined(MBEDTLS_RSA_C)
static int rsa_alt_check_pair( const void *pub, const void *prv )
static int rsa_alt_check_pair( const mbedtls_pk_context *pub, const void *prv )
{
unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
unsigned char hash[32];
size_t sig_len = 0;
int ret;
if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) )
if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub->pk_ctx ) )
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
memset( hash, 0x2a, sizeof( hash ) );
@ -491,7 +489,7 @@ static int rsa_alt_check_pair( const void *pub, const void *prv )
return( ret );
}
if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE,
if( rsa_verify_wrap( pub->pk_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) != 0 )
{
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );

View file

@ -153,3 +153,16 @@ mbedtls_pk_check_pair:"data_files/ec_256_pub.pem":"data_files/server1.key":MBEDT
RSA hash_len overflow (size_t vs unsigned int)
depends_on:MBEDTLS_RSA_C:MBEDTLS_HAVE_INT64
pk_rsa_overflow:
PK opaque mock
pk_opaque_mock:
PK opaque with failed allocation
pk_opaque_fail_allocation:
PK opaque minimal
pk_opaque_minimal:
PK opaque wrapper (RSA)
depends_on:MBEDTLS_RSA_C
pk_opaque_wrapper:

View file

@ -1,5 +1,8 @@
/* BEGIN_HEADER */
#include <string.h>
#include "mbedtls/pk.h"
#include "mbedtls/pk_info.h"
/* For error codes */
#include "mbedtls/ecp.h"
@ -39,14 +42,15 @@ static int pk_genkey( mbedtls_pk_context *pk )
}
#if defined(MBEDTLS_RSA_C)
int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen,
static int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen,
const unsigned char *input, unsigned char *output,
size_t output_max_len )
{
return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx, NULL, NULL, mode, olen,
input, output, output_max_len ) );
}
int mbedtls_rsa_sign_func( void *ctx,
static int mbedtls_rsa_sign_func( void *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, mbedtls_md_type_t md_alg, unsigned int hashlen,
const unsigned char *hash, unsigned char *sig )
@ -54,11 +58,269 @@ int mbedtls_rsa_sign_func( void *ctx,
return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx, f_rng, p_rng, mode,
md_alg, hashlen, hash, sig ) );
}
size_t mbedtls_rsa_key_len_func( void *ctx )
static size_t mbedtls_rsa_key_len_func( void *ctx )
{
return( ((const mbedtls_rsa_context *) ctx)->len );
}
/* Prepare a raw RSA context with a small random key. */
static void pk_rsa_prepare( mbedtls_rsa_context *raw )
{
mbedtls_rsa_init( raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
mbedtls_rsa_gen_key( raw, rnd_std_rand, NULL, RSA_KEY_SIZE, 3 );
}
/* Test the RSA context tested_ctx by comparing its operation with a
generic RSA context which is initialized with the key in raw. */
static void pk_rsa_match( mbedtls_rsa_context *raw,
mbedtls_pk_context *tested_ctx,
int sign_ret, int verify_ret,
int encrypt_ret, int decrypt_ret,
int debug_ret )
{
mbedtls_pk_context basic_ctx;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[1000];
unsigned char msg[50], ciph[1000], test[1000];
size_t sig_len, ciph_len, test_len;
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( msg, 0x2a, sizeof msg );
memset( ciph, 0, sizeof ciph );
memset( test, 0, sizeof test );
/* Initiliaze basic PK RSA context with raw key */
mbedtls_pk_init( &basic_ctx );
TEST_ASSERT( mbedtls_pk_setup( &basic_ctx,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_rsa_copy( mbedtls_pk_rsa( basic_ctx ), raw ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( tested_ctx, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( tested_ctx ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( tested_ctx ) == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_signature_size( tested_ctx ) == RSA_KEY_LEN );
/* Test signature */
TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == sign_ret );
if( sign_ret == 0 )
{
#if defined(MBEDTLS_HAVE_INT64)
TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, (size_t)-1,
NULL, NULL, rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_HAVE_INT64 */
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &basic_ctx, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == 0 );
}
/* Test verification */
TEST_ASSERT( mbedtls_pk_sign( &basic_ctx, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == verify_ret );
if( verify_ret == 0 )
{
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len - 1 ) == MBEDTLS_ERR_RSA_VERIFY_FAILED );
sig[sig_len-1] ^= 1;
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == MBEDTLS_ERR_RSA_INVALID_PADDING );
}
/* Test encryption */
TEST_ASSERT( mbedtls_pk_encrypt( tested_ctx, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == encrypt_ret );
if( encrypt_ret == 0 )
{
TEST_ASSERT( mbedtls_pk_decrypt( &basic_ctx, ciph, ciph_len,
test, &test_len, sizeof test,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
}
/* Test decryption */
TEST_ASSERT( mbedtls_pk_encrypt( &basic_ctx, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( tested_ctx, ciph, ciph_len,
test, &test_len, sizeof test,
rnd_std_rand, NULL ) == decrypt_ret );
if( decrypt_ret == 0 )
{
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
}
/* Test debug */
TEST_ASSERT( mbedtls_pk_debug( tested_ctx, dbg_items ) == debug_ret );
exit:
mbedtls_pk_free( &basic_ctx );
}
#define OPAQUE_MOCK_CAN_DO MBEDTLS_PK_RSA
#define OPAQUE_MOCK_BITLEN 'b'
#define OPAQUE_MOCK_MD_ALG MBEDTLS_MD_SHA256
#define OPAQUE_MOCK_SIGNATURE_SIZE 4
#define OPAQUE_MOCK_GOOD_SIGNATURE "good"
static const unsigned char opaque_mock_hash[8] = "HASHhash";
static const unsigned char opaque_mock_reference_input[10] = "INPUTinput";
static const unsigned char opaque_mock_input[10] = "INPUTinput";
static const unsigned char opaque_mock_reference_encrypted[12] = "C:JOQVUjoqvu";
static const unsigned char opaque_mock_reference_decrypted[12] = "P:HMOTShmots";
static char opaque_mock_fake_ctx = 'c';
static mbedtls_pk_debug_item opaque_mock_pk_debug_item;
static int opaque_mock_debug_called_correctly = 0;
static int opaque_mock_free_called_correctly = 0;
static size_t opaque_mock_get_bitlen( const void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( OPAQUE_MOCK_BITLEN );
exit:
return( INT_MIN );
}
static int opaque_mock_can_do( const void *ctx,
mbedtls_pk_type_t type )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( type == OPAQUE_MOCK_CAN_DO );
exit:
return( INT_MIN );
}
static int opaque_mock_verify_func( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG );
TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) );
TEST_ASSERT( hash == opaque_mock_hash );
if( sig_len != OPAQUE_MOCK_SIGNATURE_SIZE )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
if( memcmp( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE ) )
return( MBEDTLS_ERR_PK_INVALID_SIGNATURE );
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_sign_func( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG );
TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) );
TEST_ASSERT( hash == opaque_mock_hash );
memcpy( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE );
*sig_len = OPAQUE_MOCK_SIGNATURE_SIZE;
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_decrypt_func( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) );
TEST_ASSERT( !memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) );
if( osize < sizeof( opaque_mock_reference_decrypted ) )
return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL );
*olen = sizeof( opaque_mock_reference_decrypted );
memcpy( output, opaque_mock_reference_decrypted, sizeof( opaque_mock_reference_decrypted ) );
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_encrypt_func( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) );
TEST_ASSERT( !memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) );
if( osize < sizeof( opaque_mock_reference_encrypted ) )
return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL );
*olen = sizeof( opaque_mock_reference_encrypted );
memcpy( output, opaque_mock_reference_encrypted, sizeof( opaque_mock_reference_encrypted ) );
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_check_pair_func( const mbedtls_pk_context *pub,
const void *prv )
{
TEST_ASSERT( prv == &opaque_mock_fake_ctx );
if( mbedtls_pk_get_type( pub ) != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( 0 );
exit:
return( INT_MIN );
}
static void *opaque_mock_ctx_alloc_func( void )
{
return( &opaque_mock_fake_ctx );
}
static void *opaque_mock_ctx_alloc_fail( void )
{
return( NULL );
}
static void opaque_mock_ctx_free_func( void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
opaque_mock_free_called_correctly = 1;
exit:
return;
}
static void opaque_mock_debug_func( const void *ctx,
mbedtls_pk_debug_item *items )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( items == &opaque_mock_pk_debug_item );
opaque_mock_debug_called_correctly = 1;
exit:
return;
}
static size_t opaque_mock_signature_size_func( const void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( OPAQUE_MOCK_SIGNATURE_SIZE );
exit:
return( -1 );
}
#endif /* MBEDTLS_RSA_C */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
@ -451,74 +713,292 @@ void pk_rsa_alt( )
* Test it against the public operations (encrypt, verify) of a
* corresponding rsa context.
*/
mbedtls_pk_context alt;
mbedtls_rsa_context raw;
mbedtls_pk_context rsa, alt;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[1000];
unsigned char msg[50], ciph[1000], test[1000];
size_t sig_len, ciph_len, test_len;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
mbedtls_rsa_init( &raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
mbedtls_pk_init( &rsa ); mbedtls_pk_init( &alt );
/* Generate an RSA key to use in both contexts */
pk_rsa_prepare( &raw );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( msg, 0x2a, sizeof msg );
memset( ciph, 0, sizeof ciph );
memset( test, 0, sizeof test );
/* Initiliaze PK RSA context with random key */
TEST_ASSERT( mbedtls_pk_setup( &rsa,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( pk_genkey( &rsa ) == 0 );
/* Extract key to the raw rsa context */
TEST_ASSERT( mbedtls_rsa_copy( &raw, mbedtls_pk_rsa( rsa ) ) == 0 );
/* Initialize PK RSA_ALT context */
/* Set up the alt context with the generated key */
mbedtls_pk_init( &alt );
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw,
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 );
mbedtls_rsa_decrypt_func,
mbedtls_rsa_sign_func,
mbedtls_rsa_key_len_func ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( &alt, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &alt ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( &alt ) == RSA_KEY_LEN );
/* Check the metadata in the alt context */
TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 );
/* Test signature */
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == 0 );
#if defined(MBEDTLS_HAVE_INT64)
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, (size_t)-1,
NULL, NULL, rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_HAVE_INT64 */
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &rsa, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == 0 );
/* Test decrypt */
TEST_ASSERT( mbedtls_pk_encrypt( &rsa, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( &alt, ciph, ciph_len,
test, &test_len, sizeof test,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
/* Test forbidden operations */
TEST_ASSERT( mbedtls_pk_encrypt( &alt, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == ret );
TEST_ASSERT( mbedtls_pk_verify( &alt, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == ret );
TEST_ASSERT( mbedtls_pk_debug( &alt, dbg_items ) == ret );
/* Exercise the alt context */
pk_rsa_match( &raw, &alt,
0, MBEDTLS_ERR_PK_TYPE_MISMATCH,
MBEDTLS_ERR_PK_TYPE_MISMATCH, 0,
MBEDTLS_ERR_PK_TYPE_MISMATCH );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &rsa ); mbedtls_pk_free( &alt );
mbedtls_pk_free( &alt );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_opaque_mock( )
{
mbedtls_pk_info_t info =
{
MBEDTLS_PK_OPAQUE,
"mock",
opaque_mock_get_bitlen,
opaque_mock_can_do,
opaque_mock_verify_func,
opaque_mock_sign_func,
opaque_mock_decrypt_func,
opaque_mock_encrypt_func,
opaque_mock_check_pair_func,
opaque_mock_ctx_alloc_func,
opaque_mock_ctx_free_func,
opaque_mock_debug_func,
opaque_mock_signature_size_func,
};
mbedtls_pk_context ctx;
unsigned char sig[OPAQUE_MOCK_SIGNATURE_SIZE] = OPAQUE_MOCK_GOOD_SIGNATURE;
unsigned char input[sizeof( opaque_mock_reference_input )];
unsigned char output[sizeof( opaque_mock_reference_decrypted )] = "garbage";
size_t len;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 );
TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name );
TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 );
TEST_ASSERT( mbedtls_pk_signature_size( &ctx ) == OPAQUE_MOCK_SIGNATURE_SIZE );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE - 1 ) ==
MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
sig[0] ^= 1;
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE ) ==
MBEDTLS_ERR_PK_INVALID_SIGNATURE );
len = -42;
TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, &len, NULL, NULL ) == 0 );
TEST_ASSERT( len == OPAQUE_MOCK_SIGNATURE_SIZE );
memcpy( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) );
len = -42;
TEST_ASSERT( mbedtls_pk_encrypt( &ctx, input, sizeof( input ),
output, &len,
sizeof( opaque_mock_reference_encrypted ),
NULL, NULL ) == 0);
TEST_ASSERT( memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) == 0 );
TEST_ASSERT( len == sizeof( opaque_mock_reference_encrypted ) );
TEST_ASSERT( memcmp( output, opaque_mock_reference_encrypted,
sizeof( opaque_mock_reference_encrypted ) ) == 0 );
len = -42;
TEST_ASSERT( mbedtls_pk_decrypt( &ctx, input, sizeof( input ),
output, &len,
sizeof( opaque_mock_reference_decrypted ),
NULL, NULL ) == 0);
TEST_ASSERT( memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) == 0 );
TEST_ASSERT( len == sizeof( opaque_mock_reference_decrypted ) );
TEST_ASSERT( memcmp( output, opaque_mock_reference_decrypted,
sizeof( opaque_mock_reference_decrypted ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 );
{
mbedtls_pk_context pub;
mbedtls_pk_init( &pub );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == 0 );
mbedtls_pk_free( &pub );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECDSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
mbedtls_pk_free( &pub );
}
opaque_mock_debug_called_correctly = 0;
TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) == 0 );
TEST_ASSERT( opaque_mock_debug_called_correctly );
opaque_mock_free_called_correctly = 0;
mbedtls_pk_free( &ctx );
TEST_ASSERT( opaque_mock_free_called_correctly );
return;
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_opaque_minimal( )
{
mbedtls_pk_info_t info =
{
MBEDTLS_PK_OPAQUE,
"mock",
opaque_mock_get_bitlen,
opaque_mock_can_do,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
opaque_mock_ctx_free_func,
NULL,
NULL,
};
mbedtls_pk_context ctx;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 );
ctx.pk_ctx = &opaque_mock_fake_ctx;
TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name );
TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 );
TEST_ASSERT( mbedtls_pk_signature_size( &ctx ) ==
( OPAQUE_MOCK_BITLEN + 7 ) / 8 );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
NULL, 0, NULL, 0 ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG, NULL, 0,
NULL, NULL, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_encrypt( &ctx, NULL, 0,
NULL, NULL, 0, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH);
TEST_ASSERT( mbedtls_pk_decrypt( &ctx, NULL, 0,
NULL, NULL, 0, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH);
TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 );
{
mbedtls_pk_context pub;
mbedtls_pk_init( &pub );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE );
mbedtls_pk_free( &pub );
}
TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
opaque_mock_free_called_correctly = 0;
mbedtls_pk_free( &ctx );
TEST_ASSERT( opaque_mock_free_called_correctly );
return;
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_opaque_fail_allocation( )
{
mbedtls_pk_info_t info =
{
MBEDTLS_PK_OPAQUE,
"mock",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
opaque_mock_ctx_alloc_fail,
NULL,
NULL,
NULL,
};
mbedtls_pk_context ctx;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) ==
MBEDTLS_ERR_PK_ALLOC_FAILED );
TEST_ASSERT( ctx.pk_info == NULL );
TEST_ASSERT( ctx.pk_ctx == NULL );
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */
void pk_opaque_wrapper( )
{
/* Test an opaque context that's a wrapper around the usual RSA
implementation against an independent raw RSA context. */
mbedtls_pk_context opaque;
mbedtls_rsa_context raw;
const mbedtls_pk_info_t *mbedtls_rsa_info =
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA );
mbedtls_pk_info_t pk_rsa_opaque_info =
{
MBEDTLS_PK_OPAQUE,
"RSA-opaque-wrapper",
mbedtls_rsa_info->get_bitlen,
mbedtls_rsa_info->can_do,
mbedtls_rsa_info->verify_func,
mbedtls_rsa_info->sign_func,
mbedtls_rsa_info->decrypt_func,
mbedtls_rsa_info->encrypt_func,
NULL, // we don't test check_pair here
mbedtls_rsa_info->ctx_alloc_func,
mbedtls_rsa_info->ctx_free_func,
mbedtls_rsa_info->debug_func,
NULL, // signature_size_func: the fallback implementation is fine
};
/* Generate an RSA key to use in both contexts */
pk_rsa_prepare( &raw );
/* Set up the opaque context with the generated key */
mbedtls_pk_init( &opaque );
TEST_ASSERT( mbedtls_pk_setup( &opaque, &pk_rsa_opaque_info ) == 0 );
mbedtls_rsa_copy( opaque.pk_ctx, &raw );
/* Check the metadata in the opaque context */
TEST_ASSERT( mbedtls_pk_get_type( &opaque ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &opaque ),
"RSA-opaque-wrapper" ) == 0 );
/* Exercise the opaque context */
pk_rsa_match( &raw, &opaque, 0, 0, 0, 0, 0 );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &opaque );
}
/* END_CASE */