Remove curve parameter from public functions

This commit is contained in:
Manuel Pégourié-Gonnard 2019-11-21 12:00:43 +01:00
parent be5f833c9c
commit 1a5337179f
14 changed files with 55 additions and 110 deletions

View file

@ -120,12 +120,6 @@ typedef uint64_t uECC_dword_t;
#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
#define NUM_ECC_BITS 256
/* curve identifier (for API compatility - only P-256 is supported) */
typedef enum {
curve_invalid = 0,
curve_secp256r1 = 0xff
} uECC_Curve;
/*
* @brief computes doubling of point ion jacobian coordinates, in place.
* @param X1 IN/OUT -- x coordinate
@ -156,8 +150,6 @@ extern const uECC_word_t curve_n[NUM_ECC_WORDS];
extern const uECC_word_t curve_G[2 * NUM_ECC_WORDS];
extern const uECC_word_t curve_b[NUM_ECC_WORDS];
uECC_Curve uECC_secp256r1(void);
/*
* @brief Generates a random integer in the range 0 < random < top.
* Both random and top have num_words words.
@ -211,14 +203,14 @@ uECC_RNG_Function uECC_get_rng(void);
* @param curve IN -- elliptic curve
* @return size of a private key for the curve in bytes.
*/
int uECC_curve_private_key_size(uECC_Curve curve);
int uECC_curve_private_key_size(void);
/*
* @brief computes the size of a public key for the curve in bytes.
* @param curve IN -- elliptic curve
* @return the size of a public key for the curve in bytes.
*/
int uECC_curve_public_key_size(uECC_Curve curve);
int uECC_curve_public_key_size(void);
/*
* @brief Compute the corresponding public key for a private key.
@ -228,7 +220,7 @@ int uECC_curve_public_key_size(uECC_Curve curve);
* @return Returns 1 if key was computed successfully, 0 if an error occurred.
*/
int uECC_compute_public_key(const uint8_t *private_key,
uint8_t *public_key, uECC_Curve curve);
uint8_t *public_key);
/*
* @brief Compute public-key.
@ -238,7 +230,7 @@ int uECC_compute_public_key(const uint8_t *private_key,
* @param curve IN -- elliptic curve
*/
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key, uECC_Curve curve);
uECC_word_t *private_key);
/*
* @brief Point multiplication algorithm using Montgomery's ladder with co-Z
@ -249,10 +241,9 @@ uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
* @param result OUT -- returns scalar*point
* @param point IN -- elliptic curve point
* @param scalar IN -- scalar
* @param curve IN -- elliptic curve
*/
int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
const uECC_word_t * scalar, uECC_Curve curve);
const uECC_word_t * scalar);
/*
* @brief Constant-time comparison to zero - secure way to compare long integers

View file

@ -97,7 +97,7 @@ extern "C" {
* @warning A cryptographically-secure PRNG function must be set (using
* uECC_set_rng()) before calling uECC_make_key().
*/
int uECC_make_key(uint8_t *p_public_key, uint8_t *p_private_key, uECC_Curve curve);
int uECC_make_key(uint8_t *p_public_key, uint8_t *p_private_key);
#ifdef ENABLE_TESTS
@ -108,7 +108,7 @@ int uECC_make_key(uint8_t *p_public_key, uint8_t *p_private_key, uECC_Curve curv
* uECC_make_key() function for real applications.
*/
int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key,
unsigned int *d, uECC_Curve curve);
unsigned int *d);
#endif
/**
@ -128,7 +128,7 @@ int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key,
* order to produce a cryptographically secure symmetric key.
*/
int uECC_shared_secret(const uint8_t *p_public_key, const uint8_t *p_private_key,
uint8_t *p_secret, uECC_Curve curve);
uint8_t *p_secret);
#ifdef __cplusplus
}

View file

@ -109,7 +109,7 @@ extern "C" {
* attack.
*/
int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash,
unsigned p_hash_size, uint8_t *p_signature, uECC_Curve curve);
unsigned p_hash_size, uint8_t *p_signature);
#ifdef ENABLE_TESTS
/*
@ -117,8 +117,7 @@ int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash,
* Refer to uECC_sign() function for real applications.
*/
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned int hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve);
unsigned int hash_size, uECC_word_t *k, uint8_t *signature)
#endif
/**
@ -136,7 +135,7 @@ int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
* the signature values (hash_size and signature).
*/
int uECC_verify(const uint8_t *p_public_key, const uint8_t *p_message_hash,
unsigned int p_hash_size, const uint8_t *p_signature, uECC_Curve curve);
unsigned int p_hash_size, const uint8_t *p_signature);
#ifdef __cplusplus
}

View file

@ -580,7 +580,6 @@ static int uecc_eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
volatile int ret_fi;
uint8_t signature[2*NUM_ECC_BYTES];
unsigned char *p;
uECC_Curve uecc_curve = uECC_secp256r1();
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
((void) md_alg);
@ -591,7 +590,7 @@ static int uecc_eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
return( ret );
ret_fi = uECC_verify( keypair->public_key, hash,
(unsigned) hash_len, signature, uecc_curve );
(unsigned) hash_len, signature );
if( ret_fi == UECC_ATTACK_DETECTED )
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
@ -704,7 +703,6 @@ static int uecc_eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
uECC_Curve uecc_curve = uECC_secp256r1();
int ret;
/*
@ -724,7 +722,7 @@ static int uecc_eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
*/
#define MAX_SECP256R1_ECDSA_SIG_LEN ( 3 + 2 * ( 3 + NUM_ECC_BYTES ) )
ret = uECC_sign( keypair->private_key, hash, hash_len, sig, uecc_curve );
ret = uECC_sign( keypair->private_key, hash, hash_len, sig );
/* TinyCrypt uses 0 to signal errors. */
if( ret == 0 )
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );

View file

@ -986,8 +986,7 @@ static int pk_parse_key_sec1_der( mbedtls_uecc_keypair *keypair,
if( !pubkey_done )
{
ret = uECC_compute_public_key( keypair->private_key,
keypair->public_key,
uECC_secp256r1() );
keypair->public_key );
if( ret == 0 )
return( MBEDTLS_ERR_PK_KEY_INVALID_FORMAT );
}

View file

@ -3567,7 +3567,6 @@ static int ssl_out_client_key_exchange_write( mbedtls_ssl_context *ssl,
== MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA )
{
uECC_Curve uecc_curve = uECC_secp256r1();
((void) n);
((void) ret);
@ -3577,8 +3576,7 @@ static int ssl_out_client_key_exchange_write( mbedtls_ssl_context *ssl,
*p++ = 2 * NUM_ECC_BYTES + 1;
*p++ = 0x04; /* uncompressed point presentation */
if( !uECC_make_key( p, ssl->handshake->ecdh_privkey,
uecc_curve ) )
if( !uECC_make_key( p, ssl->handshake->ecdh_privkey ) )
{
return( MBEDTLS_ERR_SSL_HW_ACCEL_FAILED );
}
@ -3718,7 +3716,6 @@ static int ssl_out_client_key_exchange_write( mbedtls_ssl_context *ssl,
== MBEDTLS_KEY_EXCHANGE_ECDHE_PSK )
{
#if defined(MBEDTLS_USE_TINYCRYPT)
uECC_Curve uecc_curve = uECC_secp256r1();
((void) n);
((void) ret);
@ -3728,8 +3725,7 @@ static int ssl_out_client_key_exchange_write( mbedtls_ssl_context *ssl,
*p++ = 2 * NUM_ECC_BYTES + 1;
*p++ = 0x04; /* uncompressed point presentation */
if( !uECC_make_key( p, ssl->handshake->ecdh_privkey,
uecc_curve ) )
if( !uECC_make_key( p, ssl->handshake->ecdh_privkey ) )
{
return( MBEDTLS_ERR_SSL_HW_ACCEL_FAILED );
}

View file

@ -3279,9 +3279,6 @@ static int ssl_prepare_server_key_exchange( mbedtls_ssl_context *ssl,
unsigned char *dig_signed = NULL;
#endif /* MBEDTLS_KEY_EXCHANGE__WITH_SERVER_SIGNATURE__ENABLED */
#endif /* MBEDTLS_KEY_EXCHANGE__SOME_PFS__ENABLED */
#if defined(MBEDTLS_USE_TINYCRYPT)
uECC_Curve uecc_curve = uECC_secp256r1();
#endif
(void) ciphersuite_info; /* unused in some configurations */
#if !defined(MBEDTLS_KEY_EXCHANGE__WITH_SERVER_SIGNATURE__ENABLED)
@ -3430,8 +3427,7 @@ static int ssl_prepare_server_key_exchange( mbedtls_ssl_context *ssl,
ssl->out_msglen += sizeof( ecdh_param_hdr );
if( !uECC_make_key( &ssl->out_msg[ ssl->out_msglen ],
ssl->handshake->ecdh_privkey,
uecc_curve ) )
ssl->handshake->ecdh_privkey ) )
{
MBEDTLS_SSL_DEBUG_MSG( 1, ( "Key creation failed" ) );
return( MBEDTLS_ERR_SSL_INTERNAL_ERROR );

View file

@ -1973,13 +1973,11 @@ int mbedtls_ssl_build_pms( mbedtls_ssl_context *ssl )
mbedtls_ssl_suite_get_key_exchange( ciphersuite_info )
== MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA )
{
uECC_Curve uecc_curve = uECC_secp256r1();
((void) ret);
if( !uECC_shared_secret( ssl->handshake->ecdh_peerkey,
ssl->handshake->ecdh_privkey,
ssl->handshake->premaster,
uecc_curve ) )
ssl->handshake->premaster ) )
{
return( MBEDTLS_ERR_SSL_HW_ACCEL_FAILED );
}
@ -2170,13 +2168,11 @@ int mbedtls_ssl_psk_derive_premaster( mbedtls_ssl_context *ssl, mbedtls_key_exch
size_t zlen;
#if defined(MBEDTLS_USE_TINYCRYPT)
uECC_Curve uecc_curve = uECC_secp256r1();
((void) ret);
if( !uECC_shared_secret( ssl->handshake->ecdh_peerkey,
ssl->handshake->ecdh_privkey,
p + 2,
uecc_curve ) )
p + 2 ) )
{
return( MBEDTLS_ERR_SSL_HW_ACCEL_FAILED );
}

View file

@ -35,8 +35,7 @@ static int pk_genkey( mbedtls_pk_context *pk )
int ret;
ret = uECC_make_key( mbedtls_pk_uecc( *pk )->public_key,
mbedtls_pk_uecc( *pk )->private_key,
uECC_secp256r1() );
mbedtls_pk_uecc( *pk )->private_key );
if( ret == 0 )
return( -1 );

View file

@ -93,8 +93,7 @@ void pk_parse_public_keyfile_ec( char * key_file, int result )
TEST_ASSERT( mbedtls_ecp_check_pubkey( &eckey->grp, &eckey->Q ) == 0 );
#else
uecckey = mbedtls_pk_uecc( ctx );
TEST_ASSERT( uECC_valid_public_key( uecckey->public_key,
uECC_secp256r1() ) == 0 );
TEST_ASSERT( uECC_valid_public_key( uecckey->public_key ) == 0 );
#endif /* MBEDTLS_USE_TINYCRYPT */
}
@ -136,11 +135,9 @@ void pk_parse_keyfile_ec( char * key_file, char * password, int result )
TEST_ASSERT( mbedtls_ecp_check_privkey( &eckey->grp, &eckey->d ) == 0 );
#else
uecckey = mbedtls_pk_uecc( ctx );
TEST_ASSERT( uECC_valid_public_key( uecckey->public_key,
uECC_secp256r1() ) == 0 );
TEST_ASSERT( uECC_valid_public_key( uecckey->public_key ) == 0 );
TEST_ASSERT( uECC_compute_public_key( uecckey->private_key,
tmp_pubkey,
uECC_secp256r1() ) != 0 );
tmp_pubkey ) != 0 );
TEST_ASSERT( memcmp( tmp_pubkey, uecckey->public_key,
sizeof( tmp_pubkey ) ) == 0 );
#endif /* MBEDTLS_USE_TINYCRYPT */

View file

@ -21,17 +21,15 @@ void test_ecdh()
uint8_t secret1[NUM_ECC_BYTES] = {0};
uint8_t secret2[NUM_ECC_BYTES] = {0};
uECC_Curve curve = uECC_secp256r1();
uECC_set_rng( &uecc_rng_wrapper );
TEST_ASSERT( uECC_make_key( public1, private1, curve ) != 0 );
TEST_ASSERT( uECC_make_key( public1, private1 ) != 0 );
TEST_ASSERT( uECC_make_key( public2, private2, curve ) != 0 );
TEST_ASSERT( uECC_make_key( public2, private2 ) != 0 );
TEST_ASSERT( uECC_shared_secret( public2, private1, secret1, curve ) != 0 );
TEST_ASSERT( uECC_shared_secret( public2, private1, secret1 ) != 0 );
TEST_ASSERT( uECC_shared_secret( public1, private2, secret2, curve ) != 0 );
TEST_ASSERT( uECC_shared_secret( public1, private2, secret2 ) != 0 );
TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 );
}
@ -45,17 +43,15 @@ void test_ecdsa()
uint8_t hash[NUM_ECC_BYTES] = {0};
uint8_t sig[2*NUM_ECC_BYTES] = {0};
uECC_Curve curve = uECC_secp256r1();
uECC_set_rng( &uecc_rng_wrapper );
TEST_ASSERT( rnd_std_rand( NULL, hash, NUM_ECC_BYTES ) == 0 );
TEST_ASSERT( uECC_make_key( public, private, curve ) != 0 );
TEST_ASSERT( uECC_make_key( public, private ) != 0 );
TEST_ASSERT( uECC_sign( private, hash, sizeof( hash ), sig, curve ) != 0 );
TEST_ASSERT( uECC_sign( private, hash, sizeof( hash ), sig ) != 0 );
TEST_ASSERT( uECC_verify( public, hash, sizeof( hash ), sig, curve ) == UECC_SUCCESS );
TEST_ASSERT( uECC_verify( public, hash, sizeof( hash ), sig ) == UECC_SUCCESS );
}
/* END_CASE */
@ -64,7 +60,6 @@ void ecdh_primitive_testvec( data_t * private1, data_t * xA_str,
data_t * yA_str, data_t * private2,
data_t * xB_str, data_t * yB_str, data_t * z_str )
{
uECC_Curve curve = uECC_secp256r1();
uint8_t public1[2*NUM_ECC_BYTES] = {0};
uint8_t public2[2*NUM_ECC_BYTES] = {0};
uint8_t secret1[NUM_ECC_BYTES] = {0};
@ -76,9 +71,9 @@ void ecdh_primitive_testvec( data_t * private1, data_t * xA_str,
memcpy( public2 + NUM_ECC_BYTES, yB_str->x, yB_str->len );
// Compute shared secrets and compare to test vector secret
TEST_ASSERT( uECC_shared_secret( public2, private1->x, secret1, curve ) != 0 );
TEST_ASSERT( uECC_shared_secret( public2, private1->x, secret1 ) != 0 );
TEST_ASSERT( uECC_shared_secret( public1, private2->x, secret2, curve ) != 0 );
TEST_ASSERT( uECC_shared_secret( public1, private2->x, secret2 ) != 0 );
TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 );
TEST_ASSERT( memcmp( secret1, z_str->x, sizeof( secret1 ) ) == 0 );
@ -90,7 +85,6 @@ void ecdh_primitive_testvec( data_t * private1, data_t * xA_str,
void ecdsa_primitive_testvec( data_t * xQ_str, data_t * yQ_str,
data_t * hash, data_t * r_str, data_t * s_str )
{
uECC_Curve curve = uECC_secp256r1();
uint8_t pub_bytes[2*NUM_ECC_BYTES] = {0};
uint8_t sig_bytes[2*NUM_ECC_BYTES] = {0};
@ -100,7 +94,7 @@ void ecdsa_primitive_testvec( data_t * xQ_str, data_t * yQ_str,
memcpy( sig_bytes + NUM_ECC_BYTES, s_str->x, r_str->len );
TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len,
sig_bytes, curve ) == UECC_SUCCESS );
sig_bytes ) == UECC_SUCCESS );
// Alter the signature and check the verification fails
for( int i = 0; i < 2*NUM_ECC_BYTES; i++ )
@ -108,7 +102,7 @@ void ecdsa_primitive_testvec( data_t * xQ_str, data_t * yQ_str,
uint8_t temp = sig_bytes[i];
sig_bytes[i] = ( sig_bytes[i] + 1 ) % 256;
TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len,
sig_bytes, curve ) == UECC_FAILURE );
sig_bytes ) == UECC_FAILURE );
sig_bytes[i] = temp;
}

View file

@ -116,15 +116,13 @@ uECC_RNG_Function uECC_get_rng(void)
return g_rng_function;
}
int uECC_curve_private_key_size(uECC_Curve curve)
int uECC_curve_private_key_size(void)
{
(void) curve;
return BITS_TO_BYTES(NUM_ECC_BITS);
}
int uECC_curve_public_key_size(uECC_Curve curve)
int uECC_curve_public_key_size(void)
{
(void) curve;
return 2 * NUM_ECC_BYTES;
}
@ -672,11 +670,6 @@ static void x_side_default(uECC_word_t *result,
uECC_vli_modAdd(result, result, curve_b, curve_p);
}
uECC_Curve uECC_secp256r1(void)
{
return curve_secp256r1;
}
void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
{
unsigned int tmp[NUM_ECC_WORDS];
@ -952,7 +945,7 @@ static uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
}
int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
const uECC_word_t * scalar, uECC_Curve curve)
const uECC_word_t * scalar)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t s[NUM_ECC_WORDS];
@ -962,9 +955,6 @@ int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
uECC_word_t *initial_Z = 0;
int r;
if (curve != uECC_secp256r1())
return 0;
/* Protects against invalid curves attacks */
if (uECC_valid_point(point) != 0 ) {
return 0;
@ -1005,10 +995,9 @@ clear_and_out:
}
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key,
uECC_Curve curve)
uECC_word_t *private_key)
{
return EccPoint_mult_safer(result, curve_G, private_key, curve);
return EccPoint_mult_safer(result, curve_G, private_key);
}
/* Converts an integer in uECC native format to big-endian bytes. */
@ -1106,8 +1095,7 @@ int uECC_valid_public_key(const uint8_t *public_key)
return uECC_valid_point(_public);
}
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
uECC_Curve curve)
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key)
{
uECC_word_t _private[NUM_ECC_WORDS];
@ -1128,7 +1116,7 @@ int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
}
/* Compute public key. */
if (!EccPoint_compute_public_key(_public, _private, curve)) {
if (!EccPoint_compute_public_key(_public, _private)) {
return 0;
}

View file

@ -73,7 +73,7 @@
#include "mbedtls/platform_util.h"
int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
unsigned int *d, uECC_Curve curve)
unsigned int *d)
{
uECC_word_t _private[NUM_ECC_WORDS];
@ -85,7 +85,7 @@ int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
mbedtls_platform_memcpy (_private, d, NUM_ECC_BYTES);
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
if (EccPoint_compute_public_key(_public, _private)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
@ -106,7 +106,7 @@ int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
return 0;
}
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
int uECC_make_key(uint8_t *public_key, uint8_t *private_key)
{
uECC_word_t _random[NUM_ECC_WORDS * 2];
@ -126,7 +126,7 @@ int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
uECC_vli_mmod(_private, _random, curve_n);
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
if (EccPoint_compute_public_key(_public, _private)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
@ -149,7 +149,7 @@ int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
}
int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
uint8_t *secret, uECC_Curve curve)
uint8_t *secret)
{
uECC_word_t _public[NUM_ECC_WORDS * 2];
@ -169,7 +169,7 @@ int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
public_key + num_bytes,
num_bytes);
r = EccPoint_mult_safer(_public, _public, _private, curve);
r = EccPoint_mult_safer(_public, _public, _private);
uECC_vli_nativeToBytes(secret, num_bytes, _public);
/* erasing temporary buffer used to store secret: */

View file

@ -76,7 +76,7 @@ static uECC_RNG_Function g_rng_function = 0;
#endif
static void bits2int(uECC_word_t *native, const uint8_t *bits,
unsigned bits_size, uECC_Curve curve)
unsigned bits_size)
{
unsigned num_n_bytes = BITS_TO_BYTES(NUM_ECC_BITS);
unsigned num_n_words = BITS_TO_WORDS(NUM_ECC_BITS);
@ -84,8 +84,6 @@ static void bits2int(uECC_word_t *native, const uint8_t *bits,
uECC_word_t carry;
uECC_word_t *ptr;
(void) curve;
if (bits_size > num_n_bytes) {
bits_size = num_n_bytes;
}
@ -111,8 +109,7 @@ static void bits2int(uECC_word_t *native, const uint8_t *bits,
}
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve)
unsigned hash_size, uECC_word_t *k, uint8_t *signature)
{
uECC_word_t tmp[NUM_ECC_WORDS];
@ -128,7 +125,7 @@ int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
return 0;
}
r = EccPoint_mult_safer(p, curve_G, k, curve);
r = EccPoint_mult_safer(p, curve_G, k);
if (r == 0 || uECC_vli_isZero(p)) {
return 0;
}
@ -158,7 +155,7 @@ int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
uECC_vli_set(s, p);
uECC_vli_modMult(s, tmp, s, curve_n); /* s = r*d */
bits2int(tmp, message_hash, hash_size, curve);
bits2int(tmp, message_hash, hash_size);
uECC_vli_modAdd(s, tmp, s, curve_n); /* s = e + r*d */
uECC_vli_modMult(s, s, k, curve_n); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s) > (bitcount_t)NUM_ECC_BYTES * 8) {
@ -170,7 +167,7 @@ int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
}
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uint8_t *signature, uECC_Curve curve)
unsigned hash_size, uint8_t *signature)
{
uECC_word_t _random[2*NUM_ECC_WORDS];
uECC_word_t k[NUM_ECC_WORDS];
@ -187,8 +184,7 @@ int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
uECC_vli_mmod(k, _random, curve_n);
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
curve)) {
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature)) {
return 1;
}
}
@ -201,8 +197,7 @@ static bitcount_t smax(bitcount_t a, bitcount_t b)
}
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
unsigned hash_size, const uint8_t *signature,
uECC_Curve curve)
unsigned hash_size, const uint8_t *signature)
{
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
@ -224,9 +219,6 @@ int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
wordcount_t num_words = NUM_ECC_WORDS;
wordcount_t num_n_words = BITS_TO_WORDS(NUM_ECC_BITS);
if (curve != uECC_secp256r1())
return 0;
rx[num_n_words - 1] = 0;
r[num_n_words - 1] = 0;
s[num_n_words - 1] = 0;
@ -251,7 +243,7 @@ int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
/* Calculate u1 and u2. */
uECC_vli_modInv(z, s, curve_n); /* z = 1/s */
u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size, curve);
bits2int(u1, message_hash, hash_size);
uECC_vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */
uECC_vli_modMult(u2, r, z, curve_n); /* u2 = r/s */