Add support for signing ceritificate using a Secure element

Secure element communication is based on a mbed-os implementation that exposes a serial interface.
This commit is contained in:
Azim Khan 2018-02-07 11:11:17 +00:00
parent a814e6e0bd
commit 26a455c021

View file

@ -53,10 +53,12 @@ int main( void )
#include "mbedtls/ctr_drbg.h" #include "mbedtls/ctr_drbg.h"
#include "mbedtls/md.h" #include "mbedtls/md.h"
#include "mbedtls/error.h" #include "mbedtls/error.h"
#include "mbedtls/pk_info.h"
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <Windows.h>
#if defined(MBEDTLS_X509_CSR_PARSE_C) #if defined(MBEDTLS_X509_CSR_PARSE_C)
#define USAGE_CSR \ #define USAGE_CSR \
@ -90,6 +92,21 @@ int main( void )
#define DFL_CONSTRAINTS 1 #define DFL_CONSTRAINTS 1
#define DFL_DIGEST MBEDTLS_MD_SHA256 #define DFL_DIGEST MBEDTLS_MD_SHA256
typedef struct
{
const char * serial_port;
unsigned char key_idx;
}remote_serial_pk_context;
int is_remote_key( const char * remote_info );
int load_pubkey_from_remote( const char * remote_info, mbedtls_pk_context * ctx );
int setup_opaque_privkey( const char * remote_info, mbedtls_pk_context * ctx );
void mbedtls_pk_remote_free( mbedtls_pk_context * ctx );
int serial_xfer( const char * serial_port, const unsigned char * tx_buf,
size_t tx_buf_len, unsigned char * rx_buf, size_t rx_buf_len,
size_t * rx_len );
#define UNUSED(x) ((void)(x))
#define USAGE \ #define USAGE \
"\n usage: cert_write param=<>...\n" \ "\n usage: cert_write param=<>...\n" \
"\n acceptable parameters:\n" \ "\n acceptable parameters:\n" \
@ -577,14 +594,23 @@ int main( int argc, char *argv[] )
mbedtls_printf( " . Loading the subject key ..." ); mbedtls_printf( " . Loading the subject key ..." );
fflush( stdout ); fflush( stdout );
ret = mbedtls_pk_parse_keyfile( &loaded_subject_key, opt.subject_key, if ( is_remote_key( opt.subject_key ) )
opt.subject_pwd );
if( ret != 0 )
{ {
mbedtls_strerror( ret, buf, 1024 ); ret = load_pubkey_from_remote( opt.subject_key, &loaded_subject_key );
mbedtls_printf( " failed\n ! mbedtls_pk_parse_keyfile " if ( ret != 0 )
"returned -0x%04x - %s\n\n", -ret, buf ); goto exit;
goto exit; }
else
{
ret = mbedtls_pk_parse_keyfile( &loaded_subject_key, opt.subject_key,
opt.subject_pwd );
if( ret != 0 )
{
mbedtls_strerror( ret, buf, 1024 );
mbedtls_printf( " failed\n ! mbedtls_pk_parse_keyfile "
"returned -0x%04x - %s\n\n", -ret, buf );
goto exit;
}
} }
mbedtls_printf( " ok\n" ); mbedtls_printf( " ok\n" );
@ -593,8 +619,18 @@ int main( int argc, char *argv[] )
mbedtls_printf( " . Loading the issuer key ..." ); mbedtls_printf( " . Loading the issuer key ..." );
fflush( stdout ); fflush( stdout );
ret = mbedtls_pk_parse_keyfile( &loaded_issuer_key, opt.issuer_key, if ( is_remote_key( opt.issuer_key ) )
opt.issuer_pwd ); {
ret = setup_opaque_privkey( opt.issuer_key, &loaded_issuer_key );
if ( ret != 0 )
goto exit;
}
else
{
ret = mbedtls_pk_parse_keyfile( &loaded_issuer_key, opt.issuer_key,
opt.issuer_pwd );
}
if( ret != 0 ) if( ret != 0 )
{ {
mbedtls_strerror( ret, buf, 1024 ); mbedtls_strerror( ret, buf, 1024 );
@ -791,7 +827,10 @@ int main( int argc, char *argv[] )
exit: exit:
mbedtls_x509write_crt_free( &crt ); mbedtls_x509write_crt_free( &crt );
mbedtls_pk_free( &loaded_subject_key ); mbedtls_pk_free( &loaded_subject_key );
mbedtls_pk_free( &loaded_issuer_key ); if ( is_remote_key( opt.issuer_key ) )
mbedtls_pk_remote_free( &loaded_issuer_key );
else
mbedtls_pk_free( &loaded_issuer_key );
mbedtls_mpi_free( &serial ); mbedtls_mpi_free( &serial );
mbedtls_ctr_drbg_free( &ctr_drbg ); mbedtls_ctr_drbg_free( &ctr_drbg );
mbedtls_entropy_free( &entropy ); mbedtls_entropy_free( &entropy );
@ -803,6 +842,357 @@ exit:
return( ret ); return( ret );
} }
/** Below magic pattern is used with ATCAECC508A demo application (or similar)
* running on target to differentiate between user input and cert_write.exe.
*/
#define REMOTE_KEY_CMD_TAG "remote"
#define REMOTE_KEY_MAGIC_PATTERN "rEmOtEkEy"
#define REMOTE_KEY_ID_MIN 0
#define REMOTE_KEY_ID_MAX 7
#define REMOTE_KEY_SERIAL_BAUD CBR_9600
#define REMOTE_KEY_FUNC_GET_PUBKEY 0xA
#define REMOTE_KEY_FUNC_SIGN 0xB
extern mbedtls_pk_info_t mbedtls_eckey_info;
int is_remote_key( const char * remote_info )
{
size_t tag_len = strlen( REMOTE_KEY_CMD_TAG );
printf ("is_remote_key %s\n", remote_info);
if ( strlen( remote_info ) > tag_len &&
strncmp( remote_info, REMOTE_KEY_CMD_TAG, tag_len ) == 0 )
return 1;
return 0;
}
/** Load a transparent public key context with public key from remote device
* over serial.
* This function sends:
* rEmOtEkEy<char encoded function code=GetPubKey><char encoded private key ID>
* Receives:
* <4 bytes length indicator in network order><concatenated public key>
*/
int load_pubkey_from_remote( const char * remote_info, mbedtls_pk_context * ctx )
{
int key_idx = 0, offset = 0, ret = 0;
const char * serial_port = NULL;
unsigned char func_buffer[10];
unsigned char pub_key_buf[100];
size_t rx_len = 0;
static mbedtls_ecp_keypair ecp_key;
offset = strlen( REMOTE_KEY_CMD_TAG );
key_idx = (int)remote_info[offset++];
key_idx = key_idx - 48; // ascii to decimal
if ( key_idx < REMOTE_KEY_ID_MIN || key_idx > REMOTE_KEY_ID_MAX )
{
mbedtls_printf( " failed\n ! Invalid remote key index %d\n\n", key_idx );
return( -1 );
}
serial_port = remote_info + offset;
/* Prepare command */
offset = 0;
func_buffer[offset++] = REMOTE_KEY_FUNC_GET_PUBKEY;
func_buffer[offset++] = key_idx;
if ( serial_xfer( serial_port, func_buffer, offset, pub_key_buf, sizeof( pub_key_buf ), &rx_len ) != 0 )
{
mbedtls_printf( " failed\n ! Serial error trying to get pulic key\n\n" );
return( -1 );
}
/* Import public key from received binary */
mbedtls_ecp_keypair_init(&ecp_key);
ret = mbedtls_ecp_group_load(&ecp_key.grp, MBEDTLS_ECP_DP_SECP256R1);
if ( ret != 0 )
return( -1 );
ret = mbedtls_ecp_point_read_binary(&ecp_key.grp, &ecp_key.Q, pub_key_buf, rx_len );
if ( ret != 0 )
{
mbedtls_printf( " failed\n ! Failed to read ecp key from binary\n\n" );
return( -1 );
}
ctx->pk_info = &mbedtls_eckey_info;
ctx->pk_ctx = &ecp_key;
return( 0 );
}
/**
* @brief Tell if can do the operation given by type
*
* @param type Target type
*
* @return 0 if context can't do the operations,
* 1 otherwise.
*/
static int remote_can_do_func(const void *ctx, mbedtls_pk_type_t type)
{
UNUSED(ctx);
/* At the moment on ECDSA is supported */
return (MBEDTLS_PK_ECDSA == type);
}
/**
* @brief Use STSAFE private key for signature.
*
* @param ctx ECDSA context
* @param md_alg Algorithm that was used to hash the message
* @param hash Message hash
* @param hash_len Length of hash
* @param sig Buffer that will hold the signature
* @param sig_len Length of the signature written
* @param f_rng RNG function
* @param p_rng RNG parameter
*
* @retval 0 if successful, or 1.
*/
static int remote_sign_func(void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
remote_serial_pk_context * remote_ctx = (remote_serial_pk_context *)ctx;
unsigned char func_buffer[1024];
size_t offset = 0;
UNUSED( f_rng );
UNUSED( p_rng );
if ( md_alg != MBEDTLS_MD_SHA256 )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
func_buffer[offset++] = REMOTE_KEY_FUNC_SIGN;
func_buffer[offset++] = remote_ctx->key_idx;
func_buffer[offset++] = hash_len >> 24;
func_buffer[offset++] = hash_len >> 16;
func_buffer[offset++] = hash_len >> 8;
func_buffer[offset++] = hash_len & 0xff;
memcpy( func_buffer + offset, hash, hash_len );
offset += hash_len;
if ( serial_xfer( remote_ctx->serial_port, func_buffer, offset, sig, 100/* FIXME */, sig_len ) != 0 )
{
mbedtls_printf( " failed\n ! Serial error in signing\n\n" );
return( -1 );
}
return( 0 );
}
int mbedtls_pk_remote_setup( mbedtls_pk_context * ctx, const char * serial_port, unsigned char key_idx )
{
// allocate remote serial context
static remote_serial_pk_context remote;
/* Opaque private key */
static const mbedtls_pk_info_t remote_pk_info =
{
/* MBEDTLS_PK_ECKEY, */
MBEDTLS_PK_OPAQUE,
"RemoteSerial",
NULL,
remote_can_do_func,
NULL,
NULL,
remote_sign_func,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
if ( ctx == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
remote.serial_port = serial_port;
remote.key_idx = key_idx;
ctx->pk_ctx = (void *)&remote;
ctx->pk_info = &remote_pk_info;
return( 0 );
}
void mbedtls_pk_remote_free( mbedtls_pk_context * ctx )
{
/* Nothing to free since remote context is statically allocated.
* Within this app there is no need to scrub the memory.
*/
UNUSED( ctx );
}
int setup_opaque_privkey( const char * remote_info, mbedtls_pk_context * ctx )
{
int key_idx = 0, offset = 0, ret = 0;
const char * serial_port = NULL;
offset = strlen( REMOTE_KEY_CMD_TAG );
key_idx = (int)remote_info[offset++];
key_idx = key_idx - 48; // ascii to decimal
if ( key_idx < REMOTE_KEY_ID_MIN || key_idx > REMOTE_KEY_ID_MAX )
{
mbedtls_printf( " failed\n ! Invalid remote key index %d\n\n", key_idx );
return( -1 );
}
serial_port = remote_info + offset;
ret = mbedtls_pk_remote_setup( ctx, serial_port, key_idx );
if ( ret != 0 )
{
mbedtls_printf( " failed\n ! remote pk setup failure \n\n" );
return( -1 );
}
return( 0 );
}
int serial_xfer( const char * serial_port, const unsigned char * tx_buf,
size_t tx_buf_len, unsigned char * rx_buf, size_t rx_buf_len,
size_t * rx_len )
{
char comm_name[20];
HANDLE hComm;
DCB dcbConfig;
COMMTIMEOUTS commTimeout;
DWORD xfer_len;
unsigned char len_buf[sizeof(size_t)];
int ret = -1;
size_t len = 0, sync_pattern_idx = 0;
do
{
sprintf( comm_name, "\\\\.\\%s", serial_port );
// Open port
hComm = CreateFile( comm_name, GENERIC_READ | GENERIC_WRITE, 0, 0,
OPEN_EXISTING, 0, 0 );
if ( hComm == INVALID_HANDLE_VALUE )
{
mbedtls_printf( " failed\n ! failed to open port %s %lu\n\n", serial_port, GetLastError() );
break;
}
if( GetCommState( hComm, &dcbConfig ) )
{
/*
dcbConfig.fBinary = TRUE;
dcbConfig.fParity = TRUE;
*/
dcbConfig.BaudRate = REMOTE_KEY_SERIAL_BAUD;
dcbConfig.Parity = NOPARITY;
dcbConfig.ByteSize = 8;
dcbConfig.StopBits = ONESTOPBIT;
dcbConfig.fOutxCtsFlow = FALSE; // No CTS output flow control
dcbConfig.fOutxDsrFlow = FALSE; // No DSR output flow control
dcbConfig.fDtrControl = DTR_CONTROL_DISABLE; // DTR flow control type
dcbConfig.fDsrSensitivity = FALSE; // DSR sensitivity
dcbConfig.fTXContinueOnXoff = TRUE; // XOFF continues Tx
dcbConfig.fOutX = FALSE; // No XON/XOFF out flow control
dcbConfig.fInX = FALSE; // No XON/XOFF in flow control
dcbConfig.fErrorChar = FALSE; // Disable error replacement
dcbConfig.fNull = FALSE; // Disable null stripping
dcbConfig.fRtsControl = RTS_CONTROL_DISABLE; // RTS flow control
dcbConfig.fAbortOnError = FALSE; // Do not abort reads/writes on error
}
else
break;
if( !SetCommState( hComm, &dcbConfig ) )
break;
if( GetCommTimeouts( hComm, &commTimeout ) )
{
commTimeout.ReadIntervalTimeout = 1000;
commTimeout.ReadTotalTimeoutMultiplier = 10;
commTimeout.ReadTotalTimeoutConstant = 1000;
commTimeout.WriteTotalTimeoutConstant = 1000;
commTimeout.WriteTotalTimeoutMultiplier = 10;
}
else
break;
if( !SetCommTimeouts( hComm, &commTimeout ) )
break;
/* Sync with peer */
if( !WriteFile( hComm, REMOTE_KEY_MAGIC_PATTERN, strlen(REMOTE_KEY_MAGIC_PATTERN),
&xfer_len, NULL ) )
break;
while( sync_pattern_idx != strlen(REMOTE_KEY_MAGIC_PATTERN) )
{
char c;
if( !ReadFile( hComm, &c, sizeof(c), &xfer_len, NULL ) )
break;
if ( c == REMOTE_KEY_MAGIC_PATTERN[sync_pattern_idx] )
sync_pattern_idx++;
else
sync_pattern_idx = 0;
}
/* Exit if there was a read error */
if ( sync_pattern_idx != strlen(REMOTE_KEY_MAGIC_PATTERN) )
{
printf("Failedi to sync!");
break;
}
{
size_t i;
printf("Tx: ");
for (i = 0; i < tx_buf_len; i++)
printf ("0x%02x ", (tx_buf)[i]);
printf("\n");
}
if( !WriteFile( hComm, tx_buf, tx_buf_len,
&xfer_len, NULL ) )
break;
/* Read length indicator */
if( !ReadFile( hComm, len_buf, sizeof(len_buf), &xfer_len, NULL ) )
break;
*rx_len = ( len_buf[0] << 24 ) | ( len_buf[1] << 16 ) | ( len_buf[2] << 8 ) | len_buf[3];
if ( *rx_len > rx_buf_len )
return( -1 );
/* Read payload */
while( len < *rx_len )
{
if( !ReadFile( hComm, rx_buf + len, *rx_len - len, &xfer_len, NULL ) )
break;
len += xfer_len;
}
printf("Received LI 0x%02x 0x%02x 0x%02x 0x%02x \n", len_buf[0], len_buf[1], len_buf[2], len_buf[3]);
{
size_t i;
printf("Rx: ");
for (i = 0; i < *rx_len; i++)
printf ("0x%02x ", (rx_buf)[i]);
printf("\n");
}
ret = 0;
} while( 0 );
if( hComm != INVALID_HANDLE_VALUE )
{
CloseHandle( hComm );
hComm = INVALID_HANDLE_VALUE;
}
return( ret );
}
#endif /* MBEDTLS_X509_CRT_WRITE_C && MBEDTLS_X509_CRT_PARSE_C && #endif /* MBEDTLS_X509_CRT_WRITE_C && MBEDTLS_X509_CRT_PARSE_C &&
MBEDTLS_FS_IO && MBEDTLS_ENTROPY_C && MBEDTLS_CTR_DRBG_C && MBEDTLS_FS_IO && MBEDTLS_ENTROPY_C && MBEDTLS_CTR_DRBG_C &&
MBEDTLS_ERROR_C && MBEDTLS_PEM_WRITE_C */ MBEDTLS_ERROR_C && MBEDTLS_PEM_WRITE_C */