Merge pull request #3899 from shelib01/masked-aes

Masked AES 128 bit, encrypt only (boolean mask technique)
This commit is contained in:
Shelly Liberman 2020-11-27 17:17:23 +02:00 committed by GitHub
commit 26bea33674
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 461 additions and 14 deletions

View file

@ -42,6 +42,7 @@
#define MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH
#define MBEDTLS_AES_ONLY_ENCRYPT
#define MBEDTLS_AES_SCA_COUNTERMEASURES
#define MBEDTLS_AES_128_BIT_MASKED
#define MBEDTLS_CCM_C
/* Asymmetric crypto: Single-curve ECC only. */

View file

@ -83,6 +83,10 @@ extern "C" {
/**
* \brief The AES context-type definition.
*/
#if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
#define MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS 44
#endif
typedef struct mbedtls_aes_context
{
int nr; /*!< The number of rounds. */
@ -94,7 +98,7 @@ typedef struct mbedtls_aes_context
uint32_t hash; /*!< hash of the set key */
#endif
#if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) && !defined(MBEDTLS_PADLOCK_C)
uint32_t buf[44]; /*!< Unaligned data buffer */
uint32_t buf[MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS]; /*!< Unaligned data buffer for expanded key only */
#else /* MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
uint32_t buf[68]; /*!< Unaligned data buffer. This buffer can
hold 32 extra Bytes, which can be used for

View file

@ -78,6 +78,12 @@
#error "MBEDTLS_CTR_DRBG_C and MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH defined, but MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is not defined"
#endif
#if defined(MBEDTLS_AES_128_BIT_MASKED) && ( !defined(MBEDTLS_AES_SCA_COUNTERMEASURES) || \
!defined(MBEDTLS_AES_ONLY_ENCRYPT) || \
!defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) )
#error "MBEDTLS_AES_128_BIT_MASKED defined, but not all prerequisites"
#endif
#if defined(MBEDTLS_DHM_C) && !defined(MBEDTLS_BIGNUM_C)
#error "MBEDTLS_DHM_C defined, but not all prerequisites"
#endif

View file

@ -654,6 +654,29 @@
*/
//#define MBEDTLS_AES_SCA_COUNTERMEASURES
/**
* \def MBEDTLS_AES_128_BIT_MASKED
*
* Requires MBEDTLS_AES_SCA_COUNTERMEASURES
* MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH
* MBEDTLS_AES_ONLY_ENCRYPT
*
* Add boolean masking against possible combined side-channel-attack
* fault injection attacks.
*
* Uncommenting this macro adds data, key and Sbox masking additionally
* to dummy rounds.
*
* Tradeoff:
* Uncommenting this macro does not increase codesize in MBEDTLS_AES_ROM_TABLES
* configuration.
* Uncommenting this macro increases codesize in AES RAM tables configuration
* by ~600 bytes.
* The performance loss is ~50% with 128 bit AES encrypt.
*
*/
//#define MBEDTLS_AES_128_BIT_MASKED
/**
* \def MBEDTLS_FI_COUNTERMEASURES
*

View file

@ -91,11 +91,25 @@
typedef struct {
uint32_t *rk_ptr; /* Round Key */
uint32_t xy_values[8]; /* X0, X1, X2, X3, Y0, Y1, Y2, Y3 */
#if defined(MBEDTLS_AES_128_BIT_MASKED)
uint32_t round;
#endif
} aes_r_data_t;
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
/* Number of additional AES dummy rounds added for SCA countermeasures */
#define AES_SCA_CM_ROUNDS 5
#if defined (MBEDTLS_AES_128_BIT_MASKED)
#define Nb (4) /* number of columns (32-bit words) comprising the state */
#define Nk (4) /* number of 32-bit words comprising the key */
#define Nr (10) /* number of rounds */
// state - array holding the intermediate results during aes operation.
typedef uint8_t masked_state_t[4][4];
#endif
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_PADLOCK_C) && \
@ -143,6 +157,8 @@ static const unsigned char FSb[256] =
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
/*
* Forward tables
*/
@ -234,6 +250,8 @@ static const uint32_t FT3[256] = { FT };
#endif /* !MBEDTLS_AES_FEWER_TABLES */
#undef FT
#endif //ifndef MBEDTLS_AES_128_BIT_MASKED
#if !defined(MBEDTLS_AES_ONLY_ENCRYPT)
/*
@ -274,6 +292,7 @@ static const unsigned char RSb[256] =
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
#endif /* !MBEDTLS_AES_ONLY_ENCRYPT */
/*
@ -386,7 +405,9 @@ static const uint32_t RCON[10] =
* Forward S-box & tables
*/
static unsigned char FSb[256];
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
static uint32_t FT0[256];
#endif
#if !defined(MBEDTLS_AES_FEWER_TABLES)
static uint32_t FT1[256];
static uint32_t FT2[256];
@ -398,6 +419,7 @@ static uint32_t FT3[256];
*/
#if !defined(MBEDTLS_AES_ONLY_ENCRYPT)
static unsigned char RSb[256];
static uint32_t RT0[256];
#if !defined(MBEDTLS_AES_FEWER_TABLES)
static uint32_t RT1[256];
@ -414,15 +436,20 @@ static uint32_t RCON[10];
/*
* Tables generation code
*/
#define ROTL8(x) ( ( (x) << 8 ) & 0xFFFFFFFF ) | ( (x) >> 24 )
#define XTIME(x) ( ( (x) << 1 ) ^ ( ( (x) & 0x80 ) ? 0x1B : 0x00 ) )
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
#define ROTL8(x) ( ( (x) << 8 ) & 0xFFFFFFFF ) | ( (x) >> 24 )
#define MUL(x,y) ( ( (x) && (y) ) ? pow[(log[(x)]+log[(y)]) % 255] : 0 )
#endif
static int aes_init_done = 0;
static void aes_gen_tables( void )
{
int i, x, y, z;
int i, x, y;
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
int z;
#endif
int pow[256];
int log[256];
@ -468,7 +495,7 @@ static void aes_gen_tables( void )
RSb[x] = (unsigned char) i;
#endif
}
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
/*
* generate the forward and reverse tables
*/
@ -504,6 +531,8 @@ static void aes_gen_tables( void )
#endif /* !MBEDTLS_AES_FEWER_TABLES */
#endif /* !MBEDTLS_AES_ONLY_ENCRYPT */
}
#endif //MBEDTLS_AES_128_BIT_MASKED
}
#undef ROTL8
@ -611,6 +640,7 @@ static int aes_sca_cm_data_randomize( uint8_t *tbl, int tbl_len )
}
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if !defined(MBEDTLS_AES_128_BIT_MASKED)
#if defined(MBEDTLS_AES_FEWER_TABLES)
#define ROTL8(x) ( (uint32_t)( ( x ) << 8 ) + (uint32_t)( ( x ) >> 24 ) )
@ -640,6 +670,7 @@ static int aes_sca_cm_data_randomize( uint8_t *tbl, int tbl_len )
#define AES_FT3(idx) FT3[idx]
#endif /* MBEDTLS_AES_FEWER_TABLES */
#endif
void mbedtls_aes_init( mbedtls_aes_context *ctx )
{
@ -700,7 +731,6 @@ int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key,
volatile int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
uint32_t *RK;
uint32_t offset = 0;
AES_VALIDATE_RET( ctx != NULL );
AES_VALIDATE_RET( key != NULL );
(void) ret;
@ -731,6 +761,7 @@ int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key,
ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16( ctx->buf );
else
#endif
ctx->rk = RK = ctx->buf;
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
mbedtls_generate_fake_key( keybits, ctx );
@ -761,7 +792,6 @@ int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key,
switch( ctx->nr )
{
case 10:
for( i = 0; i < 10; i++, RK += 4 )
{
RK[4] = RK[0] ^ RCON[i] ^
@ -1026,6 +1056,299 @@ int mbedtls_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx,
#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
#if defined(MBEDTLS_AES_128_BIT_MASKED)
static uint8_t xtime( uint8_t x )
{
return ( ( x << 1 ) ^ ( ( ( x >> 7 ) & 1 ) * 0x1b ) );
}
static int sub_bytes_masked( uint32_t *data, uint8_t sbox_masked[256] )
{
volatile unsigned int i;
for ( i = 0; i < 4; i++ )
{
data[i] = ( (uint32_t)sbox_masked[(data[i]) & 0xFF] ) ^
( (uint32_t)sbox_masked[(data[i] >> 8 ) & 0xFF] << 8 ) ^
( (uint32_t)sbox_masked[(data[i] >> 16 ) & 0xFF] << 16 ) ^
( (uint32_t)sbox_masked[(data[i] >> 24 ) & 0xFF] << 24 );
}
if ( i == 4 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static int mix_columns( uint8_t *s )
{
masked_state_t *state = (masked_state_t *)s;
volatile unsigned int i = 0;
uint8_t Tmp, Tm, t;
for ( i = 0; i < 4; ++i )
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
Tm = (*state)[i][0] ^ (*state)[i][1];
Tm = xtime(Tm);
(*state)[i][0] ^= Tm ^ Tmp;
Tm = (*state)[i][1] ^ (*state)[i][2];
Tm = xtime(Tm);
(*state)[i][1] ^= Tm ^ Tmp;
Tm = (*state)[i][2] ^ (*state)[i][3];
Tm = xtime(Tm);
(*state)[i][2] ^= Tm ^ Tmp;
Tm = (*state)[i][3] ^ t;
Tm = xtime(Tm);
(*state)[i][3] ^= Tm ^ Tmp;
}
if ( i == 4 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static void shift_rows( uint8_t *s )
{
uint8_t temp;
masked_state_t *state = (masked_state_t *)s;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
#define mul_02( num ) ( ( num << 1 ) ^ ( 0x11b & - ( num >> 7 ) ) )
#define mul_03( num ) ( mul_02( num ) ^ num )
static void calc_mix_colmn_mask( uint32_t mask[10] )
{
mask[6] = mul_02( mask[0] ) ^ mul_03( mask[1] ) ^ mask[2] ^ mask[3];
mask[7] = mask[0] ^ mul_02( mask[1] ) ^ mul_03( mask[2] ) ^ mask[3];
mask[8] = mask[0] ^ mask[1] ^ mul_02( mask[2] ) ^ mul_03( mask[3] );
mask[9] = mul_03( mask[0] ) ^ mask[1] ^ mask[2] ^ mul_02( mask[3] );
}
//Calculate the the invSbox to change from Mask m to Mask m'
static int calc_sbox_masked( uint32_t mask[10], uint8_t sbox_masked[256] )
{
volatile unsigned int i = 0;
for ( i = 0; i < 256; i++ )
{
sbox_masked[i ^ mask[4]] = FSb[i] ^ mask[5];
}
if ( i == 256 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static int remask( uint32_t *data, uint32_t m1, uint32_t m2,
uint32_t m3, uint32_t m4, uint32_t m5,
uint32_t m6, uint32_t m7, uint32_t m8 )
{
volatile unsigned int i = 0;
for ( i = 0; i < 4; i++ )
{
data[i] = data[i] ^ ( ( m1 ^ m5 ) );
data[i] = data[i] ^ ( ( m2 ^ m6 ) << 8 );
data[i] = data[i] ^ ( ( m3 ^ m7 ) << 16 );
data[i] = data[i] ^ ( ( m4 ^ m8 ) << 24 );
}
if ( i == 4 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
#define MASK_INIT_CONTROL 19
static int init_masking_encrypt( const uint8_t *rk, uint8_t *rk_masked,
uint32_t mask[10], uint8_t sbox_masked[256] )
{
volatile int flow_control = 0;
unsigned int i = 0;
mbedtls_platform_memcpy( rk_masked, rk,
MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS * 4 );
//Randomly generate the masks: m1 m2 m3 m4 m m'
for ( i = 0; i < 6; i++ )
{
mask[i] = mbedtls_platform_random_in_range( 0xFF );
flow_control++;
}
//Calculate m1',m2',m3',m4'
calc_mix_colmn_mask( mask );
flow_control++;
//Calculate the masked Sbox
if ( calc_sbox_masked( mask, sbox_masked ) == 0 )
{
flow_control++;
}
//Init masked key
if ( remask( (uint32_t *)&rk_masked[(Nr * Nb * 4)], 0, 0, 0, 0,
mask[5], mask[5], mask[5], mask[5]) == 0 )
{
flow_control++;
}
// Mask change from M1',M2',M3',M4' to M
for ( i = 0; i < Nr; i++ )
{
if ( remask( (uint32_t *)&rk_masked[( i * Nb * 4 )], mask[6],
mask[7], mask[8], mask[9], mask[4], mask[4], mask[4], mask[4]) == 0 )
{
flow_control++;
}
}
if ( flow_control == MASK_INIT_CONTROL )
{
mbedtls_platform_random_delay();
if (flow_control == MASK_INIT_CONTROL)
{
return MASK_INIT_CONTROL;
}
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static int add_rk_masked( uint32_t round, uint32_t *data,
const uint32_t * rk_masked )
{
volatile unsigned int i;
unsigned int offset = round * 4;
for ( i = 0; i < 4; i++ )
{
data[i] ^= rk_masked[offset + i];
}
if ( i == 4 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static int aes_masked_round( uint32_t *data, uint32_t *key, uint32_t round,
uint32_t mask[10], uint8_t sbox_masked[256] )
{
volatile uint32_t flow_control = 0;
// Mask changes from M to M'
if ( sub_bytes_masked( data, sbox_masked ) == 0 )
{
flow_control++;
}
//No impact on mask
shift_rows((uint8_t *)data);
//Change mask from M' to
// M1 for first row
// M2 for second row
// M3 for third row
// M4 for fourth row
if ( remask( data, mask[0], mask[1], mask[2], mask[3],
mask[5], mask[5], mask[5], mask[5]) == 0 )
{
flow_control++;
}
// Masks change from M1,M2,M3,M4 to M1',M2',M3',M4'
if ( mix_columns( (uint8_t *)data ) == 0 )
{
flow_control++;
}
// Add the First round key to the state before starting the rounds.
// Masks change from M1',M2',M3',M4' to M
if ( add_rk_masked( round, data, key ) == 0 )
{
flow_control++;
}
if ( flow_control == 4 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
static int aes_masked_round_final( uint32_t *data, uint32_t *key,
uint8_t sbox_masked[256] )
{
volatile uint32_t flow_control = 0;
if ( sub_bytes_masked(data, sbox_masked) == 0 )
{
flow_control++;
}
shift_rows( (uint8_t *)data );
// Mask are removed by the last addroundkey
// From M' to 0
if( add_rk_masked( Nr, data, key ) == 0 )
{
flow_control++;
}
if ( flow_control == 2 )
{
return 0;
}
return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
//2 comes from initial data remask of real and fake data
#define MASKING_FLOW_CONTORL ( MASK_INIT_CONTROL + 2 )
#else // end of MBEDTLS_AES_128_BIT_MASKED
#define MASKING_FLOW_CONTORL 0
static uint32_t *aes_fround( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
@ -1053,10 +1376,12 @@ static uint32_t *aes_fround( uint32_t *R,
return R;
}
static void aes_fround_final( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
{
*X0 = *R++ ^ ( (uint32_t) FSb[ ( (Y0) ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( (Y1) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( (Y2) >> 16 ) & 0xFF ] << 16 ) ^
@ -1077,6 +1402,8 @@ static void aes_fround_final( uint32_t *R,
( (uint32_t) FSb[ ( (Y1) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( (Y2) >> 24 ) & 0xFF ] << 24 );
}
#endif // MBEDTLS_AES_128_BIT_MASKED
int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
@ -1086,13 +1413,19 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
aes_r_data_t aes_data_real; // real data
aes_r_data_t aes_data_fake; // fake data
aes_r_data_t *aes_data_ptr; // pointer to real or fake data
aes_r_data_t *aes_data_table[2]; // pointers to real and fake data
aes_r_data_t *aes_data_table[2] = {0}; // pointers to real and fake data
int round_ctrl_table_len = ctx->nr + 2 + AES_SCA_CM_ROUNDS;
volatile int flow_control;
volatile int flow_control = 0;
// control bytes for AES calculation rounds,
// reserve based on max rounds + dummy rounds + 2 (for initial key addition)
uint8_t round_ctrl_table[( 14 + AES_SCA_CM_ROUNDS + 2 )];
#if defined MBEDTLS_AES_128_BIT_MASKED
uint32_t rk_masked[MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS] = {0};
static uint8_t sbox_masked[256] = {0};
uint32_t mask[10] = {0};
#endif
#if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY)
unsigned key_bytes = 0;
uint32_t check_hash = 0;
@ -1108,7 +1441,17 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
check_hash = mbedtls_hash( ctx->rk, key_bytes );
#endif
#if defined (MBEDTLS_AES_128_BIT_MASKED)
/* Flow control should be MASK_INIT_CONTROL and it will be checked as
a part last flow control verification */
flow_control = init_masking_encrypt( (uint8_t *)ctx->rk,
(uint8_t *)rk_masked, mask, sbox_masked );
aes_data_real.rk_ptr = &rk_masked[0];
#else
aes_data_real.rk_ptr = ctx->rk;
#endif
aes_data_fake.rk_ptr = ctx->frk;
aes_data_table[0] = &aes_data_real;
@ -1117,7 +1460,7 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
// Get AES calculation control bytes
dummy_rounds = aes_sca_cm_data_randomize( round_ctrl_table,
round_ctrl_table_len );
flow_control = dummy_rounds;
flow_control += dummy_rounds;
// SCA countermeasure, safely clear the aes_data_real.xy_values
mbedtls_platform_memset( aes_data_real.xy_values, 0, 16 );
@ -1134,6 +1477,21 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
flow_control++;
} while( ( i = ( i + 1 ) % 4 ) != offset );
#if defined (MBEDTLS_AES_128_BIT_MASKED)
//Plain text masked with m1',m2',m3',m4'
if (remask( &aes_data_real.xy_values[0], mask[6],
mask[7], mask[8], mask[9], 0, 0, 0, 0) == 0 )
{
flow_control++;
}
if (remask( &aes_data_fake.xy_values[0], mask[6],
mask[7], mask[8], mask[9], 0, 0, 0, 0) == 0 )
{
flow_control++;
}
#endif
tindex = 0;
do
{
@ -1142,12 +1500,22 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
stop_mark = round_ctrl_table[tindex] & 0x03;
// initial round key addition
#if defined (MBEDTLS_AES_128_BIT_MASKED)
if ( add_rk_masked( 0, &aes_data_ptr->xy_values[0],
aes_data_ptr->rk_ptr ) == 0 )
{
flow_control++;
}
aes_data_ptr->round = 1;
#else
for( i = 0; i < 4; i++ )
{
aes_data_ptr->xy_values[i] ^= *aes_data_ptr->rk_ptr++;
}
tindex++;
flow_control++;
#endif
tindex++;
} while( stop_mark == 0 );
// Calculate AES rounds (9, 11 or 13 rounds) + dummy rounds
@ -1157,7 +1525,15 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4];
offset = round_ctrl_table[tindex] & 0x04;
stop_mark = round_ctrl_table[tindex] & 0x03;
#if defined (MBEDTLS_AES_128_BIT_MASKED)
if ( aes_masked_round( &aes_data_ptr->xy_values[0],
aes_data_ptr->rk_ptr,
aes_data_ptr->round, mask, sbox_masked ) == 0 )
{
flow_control++;
}
aes_data_ptr->round ++;
#else
aes_data_ptr->rk_ptr = aes_fround( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0 + offset],
&aes_data_ptr->xy_values[1 + offset],
@ -1167,8 +1543,10 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
aes_data_ptr->xy_values[5 - offset],
aes_data_ptr->xy_values[6 - offset],
aes_data_ptr->xy_values[7 - offset] );
tindex++;
flow_control++;
#endif
tindex++;
} while( stop_mark == 0 );
// Calculate final AES round + dummy rounds
@ -1176,6 +1554,15 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
{
aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4];
stop_mark = round_ctrl_table[tindex] & 0x03;
#if defined (MBEDTLS_AES_128_BIT_MASKED)
if ( aes_masked_round_final( &aes_data_ptr->xy_values[0],
aes_data_ptr->rk_ptr, sbox_masked ) == 0 )
{
flow_control++;
}
//Cleanup the masked key
mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) );
#else
aes_fround_final( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0],
&aes_data_ptr->xy_values[1],
@ -1186,6 +1573,7 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
aes_data_ptr->xy_values[6],
aes_data_ptr->xy_values[7] );
flow_control++;
#endif
tindex++;
} while( stop_mark == 0 );
@ -1202,8 +1590,11 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
flow_control++;
} while( ( i = ( i + 1 ) % 4 ) != offset );
#if defined (MBEDTLS_AES_128_BIT_MASKED)
mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) );
#endif
/* Double negation is used to silence an "extraneous parentheses" warning */
if( ! ( flow_control != tindex + dummy_rounds + 8 )
if( ! ( flow_control != tindex + dummy_rounds + MASKING_FLOW_CONTORL + 8 )
#if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY)
&& check_hash == ctx->hash
#endif
@ -1220,6 +1611,15 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
// Clear the output in case of a FI
mbedtls_platform_memset( output, 0, 16 );
mbedtls_platform_memset( (uint8_t*)&aes_data_real, 0,
sizeof(aes_data_real) );
mbedtls_platform_memset ( aes_data_table, 0, sizeof(aes_data_table) );
#if defined (MBEDTLS_AES_128_BIT_MASKED)
//Clear masked key, masked sbox and mask in case of a FI
mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) );
mbedtls_platform_memset( mask, 0, sizeof(mask) );
mbedtls_platform_memset( sbox_masked, 0, sizeof(sbox_masked) );
#endif
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
@ -1621,9 +2021,9 @@ int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
return( 0 );
}
#endif /* !MBEDTLS_AES_ONLY_ENCRYPT */
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#endif /* !MBEDTLS_AES_ONLY_ENCRYPT */
#endif /* !MBEDTLS_AES_DECRYPT_ALT */
#if !defined(MBEDTLS_DEPRECATED_REMOVED)

View file

@ -273,6 +273,9 @@ static const char *features[] = {
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
"MBEDTLS_AES_SCA_COUNTERMEASURES",
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_AES_128_BIT_MASKED)
"MBEDTLS_AES_128_BIT_MASKED",
#endif /* MBEDTLS_AES_128_BIT_MASKED */
#if defined(MBEDTLS_FI_COUNTERMEASURES)
"MBEDTLS_FI_COUNTERMEASURES",
#endif /* MBEDTLS_FI_COUNTERMEASURES */

View file

@ -770,6 +770,14 @@ int query_config( const char *config )
}
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_AES_128_BIT_MASKED)
if( strcmp( "MBEDTLS_AES_128_BIT_MASKED", config ) == 0 )
{
MACRO_EXPANSION_TO_STR( MBEDTLS_AES_128_BIT_MASKED );
return( 0 );
}
#endif /* MBEDTLS_AES_128_BIT_MASKED */
#if defined(MBEDTLS_FI_COUNTERMEASURES)
if( strcmp( "MBEDTLS_FI_COUNTERMEASURES", config ) == 0 )
{

View file

@ -60,6 +60,7 @@
# MBEDTLS_SSL_TRANSFORM_OPTIMIZE_CIPHERS
# MBEDTLS_VALIDATE_SSL_KEYS_INTEGRITY
# MBEDTLS_OPTIMIZE_TINYCRYPT_ASM
# MBEDTLS_AES_128_BIT_MASKED
# and any symbol beginning _ALT
#
# The baremetal configuration excludes options that require a library or
@ -146,6 +147,7 @@ MBEDTLS_CTR_DRBG_USE_128_BIT_KEY
MBEDTLS_SSL_TRANSFORM_OPTIMIZE_CIPHERS
MBEDTLS_VALIDATE_SSL_KEYS_INTEGRITY
MBEDTLS_OPTIMIZE_TINYCRYPT_ASM
MBEDTLS_AES_128_BIT_MASKED
MBEDTLS_PLATFORM_FAULT_CALLBACKS
_ALT\s*$
);