mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-12-25 12:55:34 +00:00
Merge pull request #5154 from gabor-mezei-arm/3649_bp2x_move_constant_time_functions_into_separate_module
[Backport 2.x] Move constant-time functions into a separate module
This commit is contained in:
commit
3107b337e1
10
ChangeLog.d/constant_time_module.txt
Normal file
10
ChangeLog.d/constant_time_module.txt
Normal file
|
@ -0,0 +1,10 @@
|
|||
Changes
|
||||
* The mbedcrypto library includes a new source code module constant_time.c,
|
||||
containing various functions meant to resist timing side channel attacks.
|
||||
This module does not have a separate configuration option, and functions
|
||||
from this module will be included in the build as required. Currently
|
||||
most of the interface of this module is private and may change at any
|
||||
time.
|
||||
|
||||
Features
|
||||
* Add new API mbedtls_ct_memcmp for constant time buffer comparison.
|
45
include/mbedtls/constant_time.h
Normal file
45
include/mbedtls/constant_time.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
/**
|
||||
* Constant-time functions
|
||||
*
|
||||
* Copyright The Mbed TLS Contributors
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MBEDTLS_CONSTANT_TIME_H
|
||||
#define MBEDTLS_CONSTANT_TIME_H
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
|
||||
/** Constant-time buffer comparison without branches.
|
||||
*
|
||||
* This is equivalent to the standard memcmp function, but is likely to be
|
||||
* compiled to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param a Pointer to the first buffer.
|
||||
* \param b Pointer to the second buffer.
|
||||
* \param n The number of bytes to compare in the buffer.
|
||||
*
|
||||
* \return Zero if the content of the two buffer is the same,
|
||||
* otherwise non-zero.
|
||||
*/
|
||||
int mbedtls_ct_memcmp( const void *a,
|
||||
const void *b,
|
||||
size_t n );
|
||||
|
||||
#endif /* MBEDTLS_CONSTANT_TIME_H */
|
|
@ -1212,26 +1212,6 @@ void mbedtls_ssl_dtls_replay_update( mbedtls_ssl_context *ssl );
|
|||
int mbedtls_ssl_session_copy( mbedtls_ssl_session *dst,
|
||||
const mbedtls_ssl_session *src );
|
||||
|
||||
/* constant-time buffer comparison */
|
||||
static inline int mbedtls_ssl_safer_memcmp( const void *a, const void *b, size_t n )
|
||||
{
|
||||
size_t i;
|
||||
volatile const unsigned char *A = (volatile const unsigned char *) a;
|
||||
volatile const unsigned char *B = (volatile const unsigned char *) b;
|
||||
volatile unsigned char diff = 0;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
/* Read volatile data in order before computing diff.
|
||||
* This avoids IAR compiler warning:
|
||||
* 'the order of volatile accesses is undefined ..' */
|
||||
unsigned char x = A[i], y = B[i];
|
||||
diff |= x ^ y;
|
||||
}
|
||||
|
||||
return( diff );
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_SSL_PROTO_SSL3) || defined(MBEDTLS_SSL_PROTO_TLS1) || \
|
||||
defined(MBEDTLS_SSL_PROTO_TLS1_1)
|
||||
int mbedtls_ssl_get_key_exchange_md_ssl_tls( mbedtls_ssl_context *ssl,
|
||||
|
|
|
@ -26,6 +26,7 @@ set(src_crypto
|
|||
chachapoly.c
|
||||
cipher.c
|
||||
cipher_wrap.c
|
||||
constant_time.c
|
||||
cmac.c
|
||||
ctr_drbg.c
|
||||
des.c
|
||||
|
|
|
@ -84,6 +84,7 @@ OBJS_CRYPTO= \
|
|||
cipher.o \
|
||||
cipher_wrap.o \
|
||||
cmac.o \
|
||||
constant_time.o \
|
||||
ctr_drbg.o \
|
||||
des.o \
|
||||
dhm.o \
|
||||
|
|
298
library/bignum.c
298
library/bignum.c
|
@ -41,6 +41,7 @@
|
|||
#include "mbedtls/bn_mul.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "constant_time_internal.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -268,162 +269,6 @@ void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
|
|||
memcpy( Y, &T, sizeof( mbedtls_mpi ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Select between two sign values in constant-time.
|
||||
*
|
||||
* This is functionally equivalent to second ? a : b but uses only bit
|
||||
* operations in order to avoid branches.
|
||||
*
|
||||
* \param[in] a The first sign; must be either +1 or -1.
|
||||
* \param[in] b The second sign; must be either +1 or -1.
|
||||
* \param[in] second Must be either 1 (return b) or 0 (return a).
|
||||
*
|
||||
* \return The selected sign value.
|
||||
*/
|
||||
static int mpi_safe_cond_select_sign( int a, int b, unsigned char second )
|
||||
{
|
||||
/* In order to avoid questions about what we can reasonnably assume about
|
||||
* the representations of signed integers, move everything to unsigned
|
||||
* by taking advantage of the fact that a and b are either +1 or -1. */
|
||||
unsigned ua = a + 1;
|
||||
unsigned ub = b + 1;
|
||||
|
||||
/* second was 0 or 1, mask is 0 or 2 as are ua and ub */
|
||||
const unsigned mask = second << 1;
|
||||
|
||||
/* select ua or ub */
|
||||
unsigned ur = ( ua & ~mask ) | ( ub & mask );
|
||||
|
||||
/* ur is now 0 or 2, convert back to -1 or +1 */
|
||||
return( (int) ur - 1 );
|
||||
}
|
||||
|
||||
/*
|
||||
* Conditionally assign dest = src, without leaking information
|
||||
* about whether the assignment was made or not.
|
||||
* dest and src must be arrays of limbs of size n.
|
||||
* assign must be 0 or 1.
|
||||
*/
|
||||
static void mpi_safe_cond_assign( size_t n,
|
||||
mbedtls_mpi_uint *dest,
|
||||
const mbedtls_mpi_uint *src,
|
||||
unsigned char assign )
|
||||
{
|
||||
size_t i;
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
|
||||
const mbedtls_mpi_uint mask = -assign;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
|
||||
}
|
||||
|
||||
/*
|
||||
* Conditionally assign X = Y, without leaking information
|
||||
* about whether the assignment was made or not.
|
||||
* (Leaking information about the respective sizes of X and Y is ok however.)
|
||||
*/
|
||||
int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t i;
|
||||
mbedtls_mpi_uint limb_mask;
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* make sure assign is 0 or 1 in a time-constant manner */
|
||||
assign = (assign | (unsigned char)-assign) >> (sizeof( assign ) * 8 - 1);
|
||||
/* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
|
||||
limb_mask = -assign;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
|
||||
|
||||
X->s = mpi_safe_cond_select_sign( X->s, Y->s, assign );
|
||||
|
||||
mpi_safe_cond_assign( Y->n, X->p, Y->p, assign );
|
||||
|
||||
for( i = Y->n; i < X->n; i++ )
|
||||
X->p[i] &= ~limb_mask;
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Conditionally swap X and Y, without leaking information
|
||||
* about whether the swap was made or not.
|
||||
* Here it is not ok to simply swap the pointers, which whould lead to
|
||||
* different memory access patterns when X and Y are used afterwards.
|
||||
*/
|
||||
int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
|
||||
{
|
||||
int ret, s;
|
||||
size_t i;
|
||||
mbedtls_mpi_uint limb_mask;
|
||||
mbedtls_mpi_uint tmp;
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
|
||||
if( X == Y )
|
||||
return( 0 );
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* make sure swap is 0 or 1 in a time-constant manner */
|
||||
swap = (swap | (unsigned char)-swap) >> (sizeof( swap ) * 8 - 1);
|
||||
/* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
|
||||
limb_mask = -swap;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
|
||||
|
||||
s = X->s;
|
||||
X->s = mpi_safe_cond_select_sign( X->s, Y->s, swap );
|
||||
Y->s = mpi_safe_cond_select_sign( Y->s, s, swap );
|
||||
|
||||
|
||||
for( i = 0; i < X->n; i++ )
|
||||
{
|
||||
tmp = X->p[i];
|
||||
X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
|
||||
Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Set value from integer
|
||||
*/
|
||||
|
@ -1246,107 +1091,6 @@ int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
|||
return( 0 );
|
||||
}
|
||||
|
||||
/** Decide if an integer is less than the other, without branches.
|
||||
*
|
||||
* \param x First integer.
|
||||
* \param y Second integer.
|
||||
*
|
||||
* \return 1 if \p x is less than \p y, 0 otherwise
|
||||
*/
|
||||
static unsigned ct_lt_mpi_uint( const mbedtls_mpi_uint x,
|
||||
const mbedtls_mpi_uint y )
|
||||
{
|
||||
mbedtls_mpi_uint ret;
|
||||
mbedtls_mpi_uint cond;
|
||||
|
||||
/*
|
||||
* Check if the most significant bits (MSB) of the operands are different.
|
||||
*/
|
||||
cond = ( x ^ y );
|
||||
/*
|
||||
* If the MSB are the same then the difference x-y will be negative (and
|
||||
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
|
||||
*/
|
||||
ret = ( x - y ) & ~cond;
|
||||
/*
|
||||
* If the MSB are different, then the operand with the MSB of 1 is the
|
||||
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
|
||||
* the MSB of y is 0.)
|
||||
*/
|
||||
ret |= y & cond;
|
||||
|
||||
|
||||
ret = ret >> ( biL - 1 );
|
||||
|
||||
return (unsigned) ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare signed values in constant time
|
||||
*/
|
||||
int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X, const mbedtls_mpi *Y,
|
||||
unsigned *ret )
|
||||
{
|
||||
size_t i;
|
||||
/* The value of any of these variables is either 0 or 1 at all times. */
|
||||
unsigned cond, done, X_is_negative, Y_is_negative;
|
||||
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
MPI_VALIDATE_RET( ret != NULL );
|
||||
|
||||
if( X->n != Y->n )
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
|
||||
/*
|
||||
* Set sign_N to 1 if N >= 0, 0 if N < 0.
|
||||
* We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
|
||||
*/
|
||||
X_is_negative = ( X->s & 2 ) >> 1;
|
||||
Y_is_negative = ( Y->s & 2 ) >> 1;
|
||||
|
||||
/*
|
||||
* If the signs are different, then the positive operand is the bigger.
|
||||
* That is if X is negative (X_is_negative == 1), then X < Y is true and it
|
||||
* is false if X is positive (X_is_negative == 0).
|
||||
*/
|
||||
cond = ( X_is_negative ^ Y_is_negative );
|
||||
*ret = cond & X_is_negative;
|
||||
|
||||
/*
|
||||
* This is a constant-time function. We might have the result, but we still
|
||||
* need to go through the loop. Record if we have the result already.
|
||||
*/
|
||||
done = cond;
|
||||
|
||||
for( i = X->n; i > 0; i-- )
|
||||
{
|
||||
/*
|
||||
* If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
|
||||
* X and Y are negative.
|
||||
*
|
||||
* Again even if we can make a decision, we just mark the result and
|
||||
* the fact that we are done and continue looping.
|
||||
*/
|
||||
cond = ct_lt_mpi_uint( Y->p[i - 1], X->p[i - 1] );
|
||||
*ret |= cond & ( 1 - done ) & X_is_negative;
|
||||
done |= cond;
|
||||
|
||||
/*
|
||||
* If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
|
||||
* X and Y are positive.
|
||||
*
|
||||
* Again even if we can make a decision, we just mark the result and
|
||||
* the fact that we are done and continue looping.
|
||||
*/
|
||||
cond = ct_lt_mpi_uint( X->p[i - 1], Y->p[i - 1] );
|
||||
*ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
|
||||
done |= cond;
|
||||
}
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare signed values
|
||||
*/
|
||||
|
@ -2207,7 +1951,7 @@ static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi
|
|||
* so d[n] == 1 and we want to set A to the result of the subtraction
|
||||
* which is d - (2^biL)^n, i.e. the n least significant limbs of d.
|
||||
* This exactly corresponds to a conditional assignment. */
|
||||
mpi_safe_cond_assign( n, A->p, d, (unsigned char) d[n] );
|
||||
mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2227,42 +1971,6 @@ static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
|
|||
mpi_montmul( A, &U, N, mm, T );
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow boolean "equal" comparison:
|
||||
* return x == y
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations - it can be used in conjunction with
|
||||
* mbedtls_ssl_cf_mask_from_bit().
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static size_t mbedtls_mpi_cf_bool_eq( size_t x, size_t y )
|
||||
{
|
||||
/* diff = 0 if x == y, non-zero otherwise */
|
||||
const size_t diff = x ^ y;
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* diff_msb's most significant bit is equal to x != y */
|
||||
const size_t diff_msb = ( diff | (size_t) -diff );
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
/* diff1 = (x != y) ? 1 : 0 */
|
||||
const size_t diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
|
||||
|
||||
return( 1 ^ diff1 );
|
||||
}
|
||||
|
||||
/**
|
||||
* Select an MPI from a table without leaking the index.
|
||||
*
|
||||
|
@ -2285,7 +1993,7 @@ static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size
|
|||
for( size_t i = 0; i < T_size; i++ )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
|
||||
(unsigned char) mbedtls_mpi_cf_bool_eq( i, idx ) ) );
|
||||
(unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
#include "mbedtls/cipher_internal.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
@ -74,27 +75,6 @@
|
|||
#define CIPHER_VALIDATE( cond ) \
|
||||
MBEDTLS_INTERNAL_VALIDATE( cond )
|
||||
|
||||
#if defined(MBEDTLS_GCM_C) || defined(MBEDTLS_CHACHAPOLY_C)
|
||||
/* Compare the contents of two buffers in constant time.
|
||||
* Returns 0 if the contents are bitwise identical, otherwise returns
|
||||
* a non-zero value.
|
||||
* This is currently only used by GCM and ChaCha20+Poly1305.
|
||||
*/
|
||||
static int mbedtls_constant_time_memcmp( const void *v1, const void *v2,
|
||||
size_t len )
|
||||
{
|
||||
const unsigned char *p1 = (const unsigned char*) v1;
|
||||
const unsigned char *p2 = (const unsigned char*) v2;
|
||||
size_t i;
|
||||
unsigned char diff;
|
||||
|
||||
for( diff = 0, i = 0; i < len; i++ )
|
||||
diff |= p1[i] ^ p2[i];
|
||||
|
||||
return( (int)diff );
|
||||
}
|
||||
#endif /* MBEDTLS_GCM_C || MBEDTLS_CHACHAPOLY_C */
|
||||
|
||||
static int supported_init = 0;
|
||||
|
||||
const int *mbedtls_cipher_list( void )
|
||||
|
@ -1159,7 +1139,7 @@ int mbedtls_cipher_check_tag( mbedtls_cipher_context_t *ctx,
|
|||
}
|
||||
|
||||
/* Check the tag in "constant-time" */
|
||||
if( mbedtls_constant_time_memcmp( tag, check_tag, tag_len ) != 0 )
|
||||
if( mbedtls_ct_memcmp( tag, check_tag, tag_len ) != 0 )
|
||||
return( MBEDTLS_ERR_CIPHER_AUTH_FAILED );
|
||||
|
||||
return( 0 );
|
||||
|
@ -1181,7 +1161,7 @@ int mbedtls_cipher_check_tag( mbedtls_cipher_context_t *ctx,
|
|||
}
|
||||
|
||||
/* Check the tag in "constant-time" */
|
||||
if( mbedtls_constant_time_memcmp( tag, check_tag, tag_len ) != 0 )
|
||||
if( mbedtls_ct_memcmp( tag, check_tag, tag_len ) != 0 )
|
||||
return( MBEDTLS_ERR_CIPHER_AUTH_FAILED );
|
||||
|
||||
return( 0 );
|
||||
|
|
760
library/constant_time.c
Normal file
760
library/constant_time.c
Normal file
|
@ -0,0 +1,760 @@
|
|||
/**
|
||||
* Constant-time functions
|
||||
*
|
||||
* Copyright The Mbed TLS Contributors
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The following functions are implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
|
||||
#include "common.h"
|
||||
#include "constant_time_internal.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
#include "mbedtls/bignum.h"
|
||||
#endif
|
||||
|
||||
#if defined(MBEDTLS_SSL_TLS_C)
|
||||
#include "mbedtls/ssl_internal.h"
|
||||
#endif
|
||||
|
||||
#if defined(MBEDTLS_RSA_C)
|
||||
#include "mbedtls/rsa.h"
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
|
||||
int mbedtls_ct_memcmp( const void *a,
|
||||
const void *b,
|
||||
size_t n )
|
||||
{
|
||||
size_t i;
|
||||
volatile const unsigned char *A = (volatile const unsigned char *) a;
|
||||
volatile const unsigned char *B = (volatile const unsigned char *) b;
|
||||
volatile unsigned char diff = 0;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
/* Read volatile data in order before computing diff.
|
||||
* This avoids IAR compiler warning:
|
||||
* 'the order of volatile accesses is undefined ..' */
|
||||
unsigned char x = A[i], y = B[i];
|
||||
diff |= x ^ y;
|
||||
}
|
||||
|
||||
return( (int)diff );
|
||||
}
|
||||
|
||||
unsigned mbedtls_ct_uint_mask( unsigned value )
|
||||
{
|
||||
/* MSVC has a warning about unary minus on unsigned, but this is
|
||||
* well-defined and precisely what we want to do here */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
size_t mbedtls_ct_size_mask( size_t value )
|
||||
{
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
|
||||
{
|
||||
/* MSVC has a warning about unary minus on unsigned, but this is
|
||||
* well-defined and precisely what we want to do here */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
/** Constant-flow mask generation for "less than" comparison:
|
||||
* - if \p x < \p y, return all-bits 1, that is (size_t) -1
|
||||
* - otherwise, return all bits 0, that is 0
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param x The first value to analyze.
|
||||
* \param y The second value to analyze.
|
||||
*
|
||||
* \return All-bits-one if \p x is less than \p y, otherwise zero.
|
||||
*/
|
||||
static size_t mbedtls_ct_size_mask_lt( size_t x,
|
||||
size_t y )
|
||||
{
|
||||
/* This has the most significant bit set if and only if x < y */
|
||||
const size_t sub = x - y;
|
||||
|
||||
/* sub1 = (x < y) ? 1 : 0 */
|
||||
const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
|
||||
|
||||
/* mask = (x < y) ? 0xff... : 0x00... */
|
||||
const size_t mask = mbedtls_ct_size_mask( sub1 );
|
||||
|
||||
return( mask );
|
||||
}
|
||||
|
||||
size_t mbedtls_ct_size_mask_ge( size_t x,
|
||||
size_t y )
|
||||
{
|
||||
return( ~mbedtls_ct_size_mask_lt( x, y ) );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
unsigned mbedtls_ct_size_bool_eq( size_t x,
|
||||
size_t y )
|
||||
{
|
||||
/* diff = 0 if x == y, non-zero otherwise */
|
||||
const size_t diff = x ^ y;
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* diff_msb's most significant bit is equal to x != y */
|
||||
const size_t diff_msb = ( diff | (size_t) -diff );
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
/* diff1 = (x != y) ? 1 : 0 */
|
||||
const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
|
||||
|
||||
return( 1 ^ diff1 );
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
/** Constant-flow "greater than" comparison:
|
||||
* return x > y
|
||||
*
|
||||
* This is equivalent to \p x > \p y, but is likely to be compiled
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param x The first value to analyze.
|
||||
* \param y The second value to analyze.
|
||||
*
|
||||
* \return 1 if \p x greater than \p y, otherwise 0.
|
||||
*/
|
||||
static unsigned mbedtls_ct_size_gt( size_t x,
|
||||
size_t y )
|
||||
{
|
||||
/* Return the sign bit (1 for negative) of (y - x). */
|
||||
return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
|
||||
const mbedtls_mpi_uint y )
|
||||
{
|
||||
mbedtls_mpi_uint ret;
|
||||
mbedtls_mpi_uint cond;
|
||||
|
||||
/*
|
||||
* Check if the most significant bits (MSB) of the operands are different.
|
||||
*/
|
||||
cond = ( x ^ y );
|
||||
/*
|
||||
* If the MSB are the same then the difference x-y will be negative (and
|
||||
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
|
||||
*/
|
||||
ret = ( x - y ) & ~cond;
|
||||
/*
|
||||
* If the MSB are different, then the operand with the MSB of 1 is the
|
||||
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
|
||||
* the MSB of y is 0.)
|
||||
*/
|
||||
ret |= y & cond;
|
||||
|
||||
|
||||
ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
|
||||
|
||||
return (unsigned) ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
unsigned mbedtls_ct_uint_if( unsigned condition,
|
||||
unsigned if1,
|
||||
unsigned if0 )
|
||||
{
|
||||
unsigned mask = mbedtls_ct_uint_mask( condition );
|
||||
return( ( mask & if1 ) | (~mask & if0 ) );
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
/** Select between two sign values without branches.
|
||||
*
|
||||
* This is functionally equivalent to `condition ? if1 : if0` but uses only bit
|
||||
* operations in order to avoid branches.
|
||||
*
|
||||
* \note if1 and if0 must be either 1 or -1, otherwise the result
|
||||
* is undefined.
|
||||
*
|
||||
* \param condition Condition to test.
|
||||
* \param if1 The first sign; must be either +1 or -1.
|
||||
* \param if0 The second sign; must be either +1 or -1.
|
||||
*
|
||||
* \return \c if1 if \p condition is nonzero, otherwise \c if0.
|
||||
* */
|
||||
static int mbedtls_ct_cond_select_sign( unsigned char condition,
|
||||
int if1,
|
||||
int if0 )
|
||||
{
|
||||
/* In order to avoid questions about what we can reasonably assume about
|
||||
* the representations of signed integers, move everything to unsigned
|
||||
* by taking advantage of the fact that if1 and if0 are either +1 or -1. */
|
||||
unsigned uif1 = if1 + 1;
|
||||
unsigned uif0 = if0 + 1;
|
||||
|
||||
/* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
|
||||
const unsigned mask = condition << 1;
|
||||
|
||||
/* select uif1 or uif0 */
|
||||
unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
|
||||
|
||||
/* ur is now 0 or 2, convert back to -1 or +1 */
|
||||
return( (int) ur - 1 );
|
||||
}
|
||||
|
||||
void mbedtls_ct_mpi_uint_cond_assign( size_t n,
|
||||
mbedtls_mpi_uint *dest,
|
||||
const mbedtls_mpi_uint *src,
|
||||
unsigned char condition )
|
||||
{
|
||||
size_t i;
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
|
||||
const mbedtls_mpi_uint mask = -condition;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
/** Shift some data towards the left inside a buffer.
|
||||
*
|
||||
* `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
|
||||
* equivalent to
|
||||
* ```
|
||||
* memmove(start, start + offset, total - offset);
|
||||
* memset(start + offset, 0, total - offset);
|
||||
* ```
|
||||
* but it strives to use a memory access pattern (and thus total timing)
|
||||
* that does not depend on \p offset. This timing independence comes at
|
||||
* the expense of performance.
|
||||
*
|
||||
* \param start Pointer to the start of the buffer.
|
||||
* \param total Total size of the buffer.
|
||||
* \param offset Offset from which to copy \p total - \p offset bytes.
|
||||
*/
|
||||
static void mbedtls_ct_mem_move_to_left( void *start,
|
||||
size_t total,
|
||||
size_t offset )
|
||||
{
|
||||
volatile unsigned char *buf = start;
|
||||
size_t i, n;
|
||||
if( total == 0 )
|
||||
return;
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
|
||||
/* The first `total - offset` passes are a no-op. The last
|
||||
* `offset` passes shift the data one byte to the left and
|
||||
* zero out the last byte. */
|
||||
for( n = 0; n < total - 1; n++ )
|
||||
{
|
||||
unsigned char current = buf[n];
|
||||
unsigned char next = buf[n+1];
|
||||
buf[n] = mbedtls_ct_uint_if( no_op, current, next );
|
||||
}
|
||||
buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
|
||||
const unsigned char *src,
|
||||
size_t len,
|
||||
size_t c1,
|
||||
size_t c2 )
|
||||
{
|
||||
/* mask = c1 == c2 ? 0xff : 0x00 */
|
||||
const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
|
||||
const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
|
||||
|
||||
/* dest[i] = c1 == c2 ? src[i] : dest[i] */
|
||||
for( size_t i = 0; i < len; i++ )
|
||||
dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
|
||||
}
|
||||
|
||||
void mbedtls_ct_memcpy_offset( unsigned char *dest,
|
||||
const unsigned char *src,
|
||||
size_t offset,
|
||||
size_t offset_min,
|
||||
size_t offset_max,
|
||||
size_t len )
|
||||
{
|
||||
size_t offsetval;
|
||||
|
||||
for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
|
||||
{
|
||||
mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
|
||||
offsetval, offset );
|
||||
}
|
||||
}
|
||||
|
||||
int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output )
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses the md_clone()
|
||||
* extension to the MD API in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
|
||||
*
|
||||
* We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
|
||||
* minlen, then cloning the context, and for each byte up to maxlen
|
||||
* finishing up the hash computation, keeping only the correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
|
||||
/* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
|
||||
* all of which have the same block size except SHA-384. */
|
||||
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
|
||||
const unsigned char * const ikey = ctx->hmac_ctx;
|
||||
const unsigned char * const okey = ikey + block_size;
|
||||
const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
|
||||
|
||||
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
|
||||
mbedtls_md_context_t aux;
|
||||
size_t offset;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
mbedtls_md_init( &aux );
|
||||
|
||||
#define MD_CHK( func_call ) \
|
||||
do { \
|
||||
ret = (func_call); \
|
||||
if( ret != 0 ) \
|
||||
goto cleanup; \
|
||||
} while( 0 )
|
||||
|
||||
MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
|
||||
|
||||
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
|
||||
* so we can start directly with the message */
|
||||
MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for( offset = min_data_len; offset <= max_data_len; offset++ )
|
||||
{
|
||||
MD_CHK( mbedtls_md_clone( &aux, ctx ) );
|
||||
MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
|
||||
offset, data_len_secret );
|
||||
|
||||
if( offset < max_data_len )
|
||||
MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
|
||||
}
|
||||
|
||||
/* The context needs to finish() before it starts() again */
|
||||
MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
MD_CHK( mbedtls_md_starts( ctx ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
|
||||
MD_CHK( mbedtls_md_finish( ctx, output ) );
|
||||
|
||||
/* Done, get ready for next time */
|
||||
MD_CHK( mbedtls_md_hmac_reset( ctx ) );
|
||||
|
||||
#undef MD_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_md_free( &aux );
|
||||
return( ret );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
#define MPI_VALIDATE_RET( cond ) \
|
||||
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
|
||||
|
||||
/*
|
||||
* Conditionally assign X = Y, without leaking information
|
||||
* about whether the assignment was made or not.
|
||||
* (Leaking information about the respective sizes of X and Y is ok however.)
|
||||
*/
|
||||
int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
|
||||
const mbedtls_mpi *Y,
|
||||
unsigned char assign )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t i;
|
||||
mbedtls_mpi_uint limb_mask;
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
|
||||
/* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
|
||||
limb_mask = mbedtls_ct_mpi_uint_mask( assign );;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
|
||||
|
||||
X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
|
||||
|
||||
mbedtls_ct_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
|
||||
|
||||
for( i = Y->n; i < X->n; i++ )
|
||||
X->p[i] &= ~limb_mask;
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Conditionally swap X and Y, without leaking information
|
||||
* about whether the swap was made or not.
|
||||
* Here it is not ok to simply swap the pointers, which whould lead to
|
||||
* different memory access patterns when X and Y are used afterwards.
|
||||
*/
|
||||
int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
|
||||
mbedtls_mpi *Y,
|
||||
unsigned char swap )
|
||||
{
|
||||
int ret, s;
|
||||
size_t i;
|
||||
mbedtls_mpi_uint limb_mask;
|
||||
mbedtls_mpi_uint tmp;
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
|
||||
if( X == Y )
|
||||
return( 0 );
|
||||
|
||||
/* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
|
||||
limb_mask = mbedtls_ct_mpi_uint_mask( swap );
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
|
||||
|
||||
s = X->s;
|
||||
X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
|
||||
Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
|
||||
|
||||
|
||||
for( i = 0; i < X->n; i++ )
|
||||
{
|
||||
tmp = X->p[i];
|
||||
X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
|
||||
Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare signed values in constant time
|
||||
*/
|
||||
int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
|
||||
const mbedtls_mpi *Y,
|
||||
unsigned *ret )
|
||||
{
|
||||
size_t i;
|
||||
/* The value of any of these variables is either 0 or 1 at all times. */
|
||||
unsigned cond, done, X_is_negative, Y_is_negative;
|
||||
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( Y != NULL );
|
||||
MPI_VALIDATE_RET( ret != NULL );
|
||||
|
||||
if( X->n != Y->n )
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
|
||||
/*
|
||||
* Set sign_N to 1 if N >= 0, 0 if N < 0.
|
||||
* We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
|
||||
*/
|
||||
X_is_negative = ( X->s & 2 ) >> 1;
|
||||
Y_is_negative = ( Y->s & 2 ) >> 1;
|
||||
|
||||
/*
|
||||
* If the signs are different, then the positive operand is the bigger.
|
||||
* That is if X is negative (X_is_negative == 1), then X < Y is true and it
|
||||
* is false if X is positive (X_is_negative == 0).
|
||||
*/
|
||||
cond = ( X_is_negative ^ Y_is_negative );
|
||||
*ret = cond & X_is_negative;
|
||||
|
||||
/*
|
||||
* This is a constant-time function. We might have the result, but we still
|
||||
* need to go through the loop. Record if we have the result already.
|
||||
*/
|
||||
done = cond;
|
||||
|
||||
for( i = X->n; i > 0; i-- )
|
||||
{
|
||||
/*
|
||||
* If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
|
||||
* X and Y are negative.
|
||||
*
|
||||
* Again even if we can make a decision, we just mark the result and
|
||||
* the fact that we are done and continue looping.
|
||||
*/
|
||||
cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
|
||||
*ret |= cond & ( 1 - done ) & X_is_negative;
|
||||
done |= cond;
|
||||
|
||||
/*
|
||||
* If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
|
||||
* X and Y are positive.
|
||||
*
|
||||
* Again even if we can make a decision, we just mark the result and
|
||||
* the fact that we are done and continue looping.
|
||||
*/
|
||||
cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
|
||||
*ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
|
||||
done |= cond;
|
||||
}
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
|
||||
unsigned char *input,
|
||||
size_t ilen,
|
||||
unsigned char *output,
|
||||
size_t output_max_len,
|
||||
size_t *olen )
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
size_t i, plaintext_max_size;
|
||||
|
||||
/* The following variables take sensitive values: their value must
|
||||
* not leak into the observable behavior of the function other than
|
||||
* the designated outputs (output, olen, return value). Otherwise
|
||||
* this would open the execution of the function to
|
||||
* side-channel-based variants of the Bleichenbacher padding oracle
|
||||
* attack. Potential side channels include overall timing, memory
|
||||
* access patterns (especially visible to an adversary who has access
|
||||
* to a shared memory cache), and branches (especially visible to
|
||||
* an adversary who has access to a shared code cache or to a shared
|
||||
* branch predictor). */
|
||||
size_t pad_count = 0;
|
||||
unsigned bad = 0;
|
||||
unsigned char pad_done = 0;
|
||||
size_t plaintext_size = 0;
|
||||
unsigned output_too_large;
|
||||
|
||||
plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
|
||||
: output_max_len;
|
||||
|
||||
/* Check and get padding length in constant time and constant
|
||||
* memory trace. The first byte must be 0. */
|
||||
bad |= input[0];
|
||||
|
||||
if( mode == MBEDTLS_RSA_PRIVATE )
|
||||
{
|
||||
/* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
|
||||
* where PS must be at least 8 nonzero bytes. */
|
||||
bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
|
||||
|
||||
/* Read the whole buffer. Set pad_done to nonzero if we find
|
||||
* the 0x00 byte and remember the padding length in pad_count. */
|
||||
for( i = 2; i < ilen; i++ )
|
||||
{
|
||||
pad_done |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
|
||||
pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
|
||||
* where PS must be at least 8 bytes with the value 0xFF. */
|
||||
bad |= input[1] ^ MBEDTLS_RSA_SIGN;
|
||||
|
||||
/* Read the whole buffer. Set pad_done to nonzero if we find
|
||||
* the 0x00 byte and remember the padding length in pad_count.
|
||||
* If there's a non-0xff byte in the padding, the padding is bad. */
|
||||
for( i = 2; i < ilen; i++ )
|
||||
{
|
||||
pad_done |= mbedtls_ct_uint_if( input[i], 0, 1 );
|
||||
pad_count += mbedtls_ct_uint_if( pad_done, 0, 1 );
|
||||
bad |= mbedtls_ct_uint_if( pad_done, 0, input[i] ^ 0xFF );
|
||||
}
|
||||
}
|
||||
|
||||
/* If pad_done is still zero, there's no data, only unfinished padding. */
|
||||
bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
|
||||
|
||||
/* There must be at least 8 bytes of padding. */
|
||||
bad |= mbedtls_ct_size_gt( 8, pad_count );
|
||||
|
||||
/* If the padding is valid, set plaintext_size to the number of
|
||||
* remaining bytes after stripping the padding. If the padding
|
||||
* is invalid, avoid leaking this fact through the size of the
|
||||
* output: use the maximum message size that fits in the output
|
||||
* buffer. Do it without branches to avoid leaking the padding
|
||||
* validity through timing. RSA keys are small enough that all the
|
||||
* size_t values involved fit in unsigned int. */
|
||||
plaintext_size = mbedtls_ct_uint_if(
|
||||
bad, (unsigned) plaintext_max_size,
|
||||
(unsigned) ( ilen - pad_count - 3 ) );
|
||||
|
||||
/* Set output_too_large to 0 if the plaintext fits in the output
|
||||
* buffer and to 1 otherwise. */
|
||||
output_too_large = mbedtls_ct_size_gt( plaintext_size,
|
||||
plaintext_max_size );
|
||||
|
||||
/* Set ret without branches to avoid timing attacks. Return:
|
||||
* - INVALID_PADDING if the padding is bad (bad != 0).
|
||||
* - OUTPUT_TOO_LARGE if the padding is good but the decrypted
|
||||
* plaintext does not fit in the output buffer.
|
||||
* - 0 if the padding is correct. */
|
||||
ret = - (int) mbedtls_ct_uint_if(
|
||||
bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
|
||||
mbedtls_ct_uint_if( output_too_large,
|
||||
- MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
|
||||
0 ) );
|
||||
|
||||
/* If the padding is bad or the plaintext is too large, zero the
|
||||
* data that we're about to copy to the output buffer.
|
||||
* We need to copy the same amount of data
|
||||
* from the same buffer whether the padding is good or not to
|
||||
* avoid leaking the padding validity through overall timing or
|
||||
* through memory or cache access patterns. */
|
||||
bad = mbedtls_ct_uint_mask( bad | output_too_large );
|
||||
for( i = 11; i < ilen; i++ )
|
||||
input[i] &= ~bad;
|
||||
|
||||
/* If the plaintext is too large, truncate it to the buffer size.
|
||||
* Copy anyway to avoid revealing the length through timing, because
|
||||
* revealing the length is as bad as revealing the padding validity
|
||||
* for a Bleichenbacher attack. */
|
||||
plaintext_size = mbedtls_ct_uint_if( output_too_large,
|
||||
(unsigned) plaintext_max_size,
|
||||
(unsigned) plaintext_size );
|
||||
|
||||
/* Move the plaintext to the leftmost position where it can start in
|
||||
* the working buffer, i.e. make it start plaintext_max_size from
|
||||
* the end of the buffer. Do this with a memory access trace that
|
||||
* does not depend on the plaintext size. After this move, the
|
||||
* starting location of the plaintext is no longer sensitive
|
||||
* information. */
|
||||
mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
|
||||
plaintext_max_size,
|
||||
plaintext_max_size - plaintext_size );
|
||||
|
||||
/* Finally copy the decrypted plaintext plus trailing zeros into the output
|
||||
* buffer. If output_max_len is 0, then output may be an invalid pointer
|
||||
* and the result of memcpy() would be undefined; prevent undefined
|
||||
* behavior making sure to depend only on output_max_len (the size of the
|
||||
* user-provided output buffer), which is independent from plaintext
|
||||
* length, validity of padding, success of the decryption, and other
|
||||
* secrets. */
|
||||
if( output_max_len != 0 )
|
||||
memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
|
||||
|
||||
/* Report the amount of data we copied to the output buffer. In case
|
||||
* of errors (bad padding or output too large), the value of *olen
|
||||
* when this function returns is not specified. Making it equivalent
|
||||
* to the good case limits the risks of leaking the padding validity. */
|
||||
*olen = plaintext_size;
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
|
300
library/constant_time_internal.h
Normal file
300
library/constant_time_internal.h
Normal file
|
@ -0,0 +1,300 @@
|
|||
/**
|
||||
* Constant-time functions
|
||||
*
|
||||
* Copyright The Mbed TLS Contributors
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MBEDTLS_CONSTANT_TIME_INTERNAL_H
|
||||
#define MBEDTLS_CONSTANT_TIME_INTERNAL_H
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
#include "mbedtls/bignum.h"
|
||||
#endif
|
||||
|
||||
#if defined(MBEDTLS_SSL_TLS_C)
|
||||
#include "mbedtls/ssl_internal.h"
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
|
||||
/** Turn a value into a mask:
|
||||
* - if \p value == 0, return the all-bits 0 mask, aka 0
|
||||
* - otherwise, return the all-bits 1 mask, aka (unsigned) -1
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param value The value to analyze.
|
||||
*
|
||||
* \return Zero if \p value is zero, otherwise all-bits-one.
|
||||
*/
|
||||
unsigned mbedtls_ct_uint_mask( unsigned value );
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
/** Turn a value into a mask:
|
||||
* - if \p value == 0, return the all-bits 0 mask, aka 0
|
||||
* - otherwise, return the all-bits 1 mask, aka (size_t) -1
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param value The value to analyze.
|
||||
*
|
||||
* \return Zero if \p value is zero, otherwise all-bits-one.
|
||||
*/
|
||||
size_t mbedtls_ct_size_mask( size_t value );
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
/** Turn a value into a mask:
|
||||
* - if \p value == 0, return the all-bits 0 mask, aka 0
|
||||
* - otherwise, return the all-bits 1 mask, aka (mbedtls_mpi_uint) -1
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param value The value to analyze.
|
||||
*
|
||||
* \return Zero if \p value is zero, otherwise all-bits-one.
|
||||
*/
|
||||
mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value );
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
/** Constant-flow mask generation for "greater or equal" comparison:
|
||||
* - if \p x >= \p y, return all-bits 1, that is (size_t) -1
|
||||
* - otherwise, return all bits 0, that is 0
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* \param x The first value to analyze.
|
||||
* \param y The second value to analyze.
|
||||
*
|
||||
* \return All-bits-one if \p x is greater or equal than \p y,
|
||||
* otherwise zero.
|
||||
*/
|
||||
size_t mbedtls_ct_size_mask_ge( size_t x,
|
||||
size_t y );
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
/** Constant-flow boolean "equal" comparison:
|
||||
* return x == y
|
||||
*
|
||||
* This is equivalent to \p x == \p y, but is likely to be compiled
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param x The first value to analyze.
|
||||
* \param y The second value to analyze.
|
||||
*
|
||||
* \return 1 if \p x equals to \p y, otherwise 0.
|
||||
*/
|
||||
unsigned mbedtls_ct_size_bool_eq( size_t x,
|
||||
size_t y );
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
/** Decide if an integer is less than the other, without branches.
|
||||
*
|
||||
* This is equivalent to \p x < \p y, but is likely to be compiled
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param x The first value to analyze.
|
||||
* \param y The second value to analyze.
|
||||
*
|
||||
* \return 1 if \p x is less than \p y, otherwise 0.
|
||||
*/
|
||||
unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
|
||||
const mbedtls_mpi_uint y );
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
/** Choose between two integer values without branches.
|
||||
*
|
||||
* This is equivalent to `condition ? if1 : if0`, but is likely to be compiled
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param condition Condition to test.
|
||||
* \param if1 Value to use if \p condition is nonzero.
|
||||
* \param if0 Value to use if \p condition is zero.
|
||||
*
|
||||
* \return \c if1 if \p condition is nonzero, otherwise \c if0.
|
||||
*/
|
||||
unsigned mbedtls_ct_uint_if( unsigned condition,
|
||||
unsigned if1,
|
||||
unsigned if0 );
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
||||
/** Conditionally assign a value without branches.
|
||||
*
|
||||
* This is equivalent to `if ( condition ) dest = src`, but is likely
|
||||
* to be compiled to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param n \p dest and \p src must be arrays of limbs of size n.
|
||||
* \param dest The MPI to conditionally assign to. This must point
|
||||
* to an initialized MPI.
|
||||
* \param src The MPI to be assigned from. This must point to an
|
||||
* initialized MPI.
|
||||
* \param condition Condition to test, must be 0 or 1.
|
||||
*/
|
||||
void mbedtls_ct_mpi_uint_cond_assign( size_t n,
|
||||
mbedtls_mpi_uint *dest,
|
||||
const mbedtls_mpi_uint *src,
|
||||
unsigned char condition );
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
|
||||
/** Conditional memcpy without branches.
|
||||
*
|
||||
* This is equivalent to `if ( c1 == c2 ) memcpy(dest, src, len)`, but is likely
|
||||
* to be compiled to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param dest The pointer to conditionally copy to.
|
||||
* \param src The pointer to copy from. Shouldn't overlap with \p dest.
|
||||
* \param len The number of bytes to copy.
|
||||
* \param c1 The first value to analyze in the condition.
|
||||
* \param c2 The second value to analyze in the condition.
|
||||
*/
|
||||
void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
|
||||
const unsigned char *src,
|
||||
size_t len,
|
||||
size_t c1, size_t c2 );
|
||||
|
||||
/** Copy data from a secret position with constant flow.
|
||||
*
|
||||
* This function copies \p len bytes from \p src_base + \p offset_secret to \p
|
||||
* dst, with a code flow and memory access pattern that does not depend on \p
|
||||
* offset_secret, but only on \p offset_min, \p offset_max and \p len.
|
||||
* Functionally equivalent to `memcpy(dst, src + offset_secret, len)`.
|
||||
*
|
||||
* \param dest The destination buffer. This must point to a writable
|
||||
* buffer of at least \p len bytes.
|
||||
* \param src The base of the source buffer. This must point to a
|
||||
* readable buffer of at least \p offset_max + \p len
|
||||
* bytes. Shouldn't overlap with \p dest.
|
||||
* \param offset The offset in the source buffer from which to copy.
|
||||
* This must be no less than \p offset_min and no greater
|
||||
* than \p offset_max.
|
||||
* \param offset_min The minimal value of \p offset.
|
||||
* \param offset_max The maximal value of \p offset.
|
||||
* \param len The number of bytes to copy.
|
||||
*/
|
||||
void mbedtls_ct_memcpy_offset( unsigned char *dest,
|
||||
const unsigned char *src,
|
||||
size_t offset,
|
||||
size_t offset_min,
|
||||
size_t offset_max,
|
||||
size_t len );
|
||||
|
||||
/** Compute the HMAC of variable-length data with constant flow.
|
||||
*
|
||||
* This function computes the HMAC of the concatenation of \p add_data and \p
|
||||
* data, and does with a code flow and memory access pattern that does not
|
||||
* depend on \p data_len_secret, but only on \p min_data_len and \p
|
||||
* max_data_len. In particular, this function always reads exactly \p
|
||||
* max_data_len bytes from \p data.
|
||||
*
|
||||
* \param ctx The HMAC context. It must have keys configured
|
||||
* with mbedtls_md_hmac_starts() and use one of the
|
||||
* following hashes: SHA-384, SHA-256, SHA-1 or MD-5.
|
||||
* It is reset using mbedtls_md_hmac_reset() after
|
||||
* the computation is complete to prepare for the
|
||||
* next computation.
|
||||
* \param add_data The first part of the message whose HMAC is being
|
||||
* calculated. This must point to a readable buffer
|
||||
* of \p add_data_len bytes.
|
||||
* \param add_data_len The length of \p add_data in bytes.
|
||||
* \param data The buffer containing the second part of the
|
||||
* message. This must point to a readable buffer
|
||||
* of \p max_data_len bytes.
|
||||
* \param data_len_secret The length of the data to process in \p data.
|
||||
* This must be no less than \p min_data_len and no
|
||||
* greater than \p max_data_len.
|
||||
* \param min_data_len The minimal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param max_data_len The maximal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param output The HMAC will be written here. This must point to
|
||||
* a writable buffer of sufficient size to hold the
|
||||
* HMAC value.
|
||||
*
|
||||
* \retval 0 on success.
|
||||
* \retval #MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED
|
||||
* The hardware accelerator failed.
|
||||
*/
|
||||
int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output );
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
/** This function performs the unpadding part of a PKCS#1 v1.5 decryption
|
||||
* operation (EME-PKCS1-v1_5 decoding).
|
||||
*
|
||||
* \note The return value from this function is a sensitive value
|
||||
* (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
|
||||
* in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
|
||||
* is often a situation that an attacker can provoke and leaking which
|
||||
* one is the result is precisely the information the attacker wants.
|
||||
*
|
||||
* \param mode The mode of operation. This must be either
|
||||
* #MBEDTLS_RSA_PRIVATE or #MBEDTLS_RSA_PUBLIC (deprecated).
|
||||
* \param input The input buffer which is the payload inside PKCS#1v1.5
|
||||
* encryption padding, called the "encoded message EM"
|
||||
* by the terminology.
|
||||
* \param ilen The length of the payload in the \p input buffer.
|
||||
* \param output The buffer for the payload, called "message M" by the
|
||||
* PKCS#1 terminology. This must be a writable buffer of
|
||||
* length \p output_max_len bytes.
|
||||
* \param olen The address at which to store the length of
|
||||
* the payload. This must not be \c NULL.
|
||||
* \param output_max_len The length in bytes of the output buffer \p output.
|
||||
*
|
||||
* \return \c 0 on success.
|
||||
* \return #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
|
||||
* The output buffer is too small for the unpadded payload.
|
||||
* \return #MBEDTLS_ERR_RSA_INVALID_PADDING
|
||||
* The input doesn't contain properly formatted padding.
|
||||
*/
|
||||
int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
|
||||
unsigned char *input,
|
||||
size_t ilen,
|
||||
unsigned char *output,
|
||||
size_t output_max_len,
|
||||
size_t *olen );
|
||||
|
||||
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
|
||||
|
||||
#endif /* MBEDTLS_CONSTANT_TIME_INTERNAL_H */
|
|
@ -34,6 +34,7 @@
|
|||
#include "mbedtls/nist_kw.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
@ -52,26 +53,6 @@
|
|||
#define KW_SEMIBLOCK_LENGTH 8
|
||||
#define MIN_SEMIBLOCKS_COUNT 3
|
||||
|
||||
/* constant-time buffer comparison */
|
||||
static inline unsigned char mbedtls_nist_kw_safer_memcmp( const void *a, const void *b, size_t n )
|
||||
{
|
||||
size_t i;
|
||||
volatile const unsigned char *A = (volatile const unsigned char *) a;
|
||||
volatile const unsigned char *B = (volatile const unsigned char *) b;
|
||||
volatile unsigned char diff = 0;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
/* Read volatile data in order before computing diff.
|
||||
* This avoids IAR compiler warning:
|
||||
* 'the order of volatile accesses is undefined ..' */
|
||||
unsigned char x = A[i], y = B[i];
|
||||
diff |= x ^ y;
|
||||
}
|
||||
|
||||
return( diff );
|
||||
}
|
||||
|
||||
/*! The 64-bit default integrity check value (ICV) for KW mode. */
|
||||
static const unsigned char NIST_KW_ICV1[] = {0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6};
|
||||
/*! The 32-bit default integrity check value (ICV) for KWP mode. */
|
||||
|
@ -398,7 +379,7 @@ int mbedtls_nist_kw_unwrap( mbedtls_nist_kw_context *ctx,
|
|||
goto cleanup;
|
||||
|
||||
/* Check ICV in "constant-time" */
|
||||
diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH );
|
||||
diff = mbedtls_ct_memcmp( NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH );
|
||||
|
||||
if( diff != 0 )
|
||||
{
|
||||
|
@ -447,7 +428,7 @@ int mbedtls_nist_kw_unwrap( mbedtls_nist_kw_context *ctx,
|
|||
}
|
||||
|
||||
/* Check ICV in "constant-time" */
|
||||
diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2 );
|
||||
diff = mbedtls_ct_memcmp( NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2 );
|
||||
|
||||
if( diff != 0 )
|
||||
{
|
||||
|
|
247
library/rsa.c
247
library/rsa.c
|
@ -44,6 +44,8 @@
|
|||
#include "mbedtls/oid.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "constant_time_internal.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -72,22 +74,6 @@
|
|||
#define RSA_VALIDATE( cond ) \
|
||||
MBEDTLS_INTERNAL_VALIDATE( cond )
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15)
|
||||
/* constant-time buffer comparison */
|
||||
static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
|
||||
{
|
||||
size_t i;
|
||||
const unsigned char *A = (const unsigned char *) a;
|
||||
const unsigned char *B = (const unsigned char *) b;
|
||||
unsigned char diff = 0;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
diff |= A[i] ^ B[i];
|
||||
|
||||
return( diff );
|
||||
}
|
||||
#endif /* MBEDTLS_PKCS1_V15 */
|
||||
|
||||
int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
|
||||
const mbedtls_mpi *N,
|
||||
const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
||||
|
@ -1494,126 +1480,21 @@ cleanup:
|
|||
#endif /* MBEDTLS_PKCS1_V21 */
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15)
|
||||
/** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
|
||||
*
|
||||
* \param value The value to analyze.
|
||||
* \return Zero if \p value is zero, otherwise all-bits-one.
|
||||
*/
|
||||
static unsigned all_or_nothing_int( unsigned value )
|
||||
{
|
||||
/* MSVC has a warning about unary minus on unsigned, but this is
|
||||
* well-defined and precisely what we want to do here */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Check whether a size is out of bounds, without branches.
|
||||
*
|
||||
* This is equivalent to `size > max`, but is likely to be compiled to
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param size Size to check.
|
||||
* \param max Maximum desired value for \p size.
|
||||
* \return \c 0 if `size <= max`.
|
||||
* \return \c 1 if `size > max`.
|
||||
*/
|
||||
static unsigned size_greater_than( size_t size, size_t max )
|
||||
{
|
||||
/* Return the sign bit (1 for negative) of (max - size). */
|
||||
return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
|
||||
}
|
||||
|
||||
/** Choose between two integer values, without branches.
|
||||
*
|
||||
* This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
|
||||
* to code using bitwise operation rather than a branch.
|
||||
*
|
||||
* \param cond Condition to test.
|
||||
* \param if1 Value to use if \p cond is nonzero.
|
||||
* \param if0 Value to use if \p cond is zero.
|
||||
* \return \c if1 if \p cond is nonzero, otherwise \c if0.
|
||||
*/
|
||||
static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
|
||||
{
|
||||
unsigned mask = all_or_nothing_int( cond );
|
||||
return( ( mask & if1 ) | (~mask & if0 ) );
|
||||
}
|
||||
|
||||
/** Shift some data towards the left inside a buffer without leaking
|
||||
* the length of the data through side channels.
|
||||
*
|
||||
* `mem_move_to_left(start, total, offset)` is functionally equivalent to
|
||||
* ```
|
||||
* memmove(start, start + offset, total - offset);
|
||||
* memset(start + offset, 0, total - offset);
|
||||
* ```
|
||||
* but it strives to use a memory access pattern (and thus total timing)
|
||||
* that does not depend on \p offset. This timing independence comes at
|
||||
* the expense of performance.
|
||||
*
|
||||
* \param start Pointer to the start of the buffer.
|
||||
* \param total Total size of the buffer.
|
||||
* \param offset Offset from which to copy \p total - \p offset bytes.
|
||||
*/
|
||||
static void mem_move_to_left( void *start,
|
||||
size_t total,
|
||||
size_t offset )
|
||||
{
|
||||
volatile unsigned char *buf = start;
|
||||
size_t i, n;
|
||||
if( total == 0 )
|
||||
return;
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
unsigned no_op = size_greater_than( total - offset, i );
|
||||
/* The first `total - offset` passes are a no-op. The last
|
||||
* `offset` passes shift the data one byte to the left and
|
||||
* zero out the last byte. */
|
||||
for( n = 0; n < total - 1; n++ )
|
||||
{
|
||||
unsigned char current = buf[n];
|
||||
unsigned char next = buf[n+1];
|
||||
buf[n] = if_int( no_op, current, next );
|
||||
}
|
||||
buf[total-1] = if_int( no_op, buf[total-1], 0 );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
|
||||
*/
|
||||
int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng,
|
||||
int mode, size_t *olen,
|
||||
int mode,
|
||||
size_t *olen,
|
||||
const unsigned char *input,
|
||||
unsigned char *output,
|
||||
size_t output_max_len )
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
size_t ilen, i, plaintext_max_size;
|
||||
size_t ilen;
|
||||
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
|
||||
/* The following variables take sensitive values: their value must
|
||||
* not leak into the observable behavior of the function other than
|
||||
* the designated outputs (output, olen, return value). Otherwise
|
||||
* this would open the execution of the function to
|
||||
* side-channel-based variants of the Bleichenbacher padding oracle
|
||||
* attack. Potential side channels include overall timing, memory
|
||||
* access patterns (especially visible to an adversary who has access
|
||||
* to a shared memory cache), and branches (especially visible to
|
||||
* an adversary who has access to a shared code cache or to a shared
|
||||
* branch predictor). */
|
||||
size_t pad_count = 0;
|
||||
unsigned bad = 0;
|
||||
unsigned char pad_done = 0;
|
||||
size_t plaintext_size = 0;
|
||||
unsigned output_too_large;
|
||||
|
||||
RSA_VALIDATE_RET( ctx != NULL );
|
||||
RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
|
||||
|
@ -1623,9 +1504,6 @@ int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
|
|||
RSA_VALIDATE_RET( olen != NULL );
|
||||
|
||||
ilen = ctx->len;
|
||||
plaintext_max_size = ( output_max_len > ilen - 11 ?
|
||||
ilen - 11 :
|
||||
output_max_len );
|
||||
|
||||
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
|
||||
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
||||
|
@ -1640,115 +1518,8 @@ int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
|
|||
if( ret != 0 )
|
||||
goto cleanup;
|
||||
|
||||
/* Check and get padding length in constant time and constant
|
||||
* memory trace. The first byte must be 0. */
|
||||
bad |= buf[0];
|
||||
|
||||
if( mode == MBEDTLS_RSA_PRIVATE )
|
||||
{
|
||||
/* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
|
||||
* where PS must be at least 8 nonzero bytes. */
|
||||
bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
|
||||
|
||||
/* Read the whole buffer. Set pad_done to nonzero if we find
|
||||
* the 0x00 byte and remember the padding length in pad_count. */
|
||||
for( i = 2; i < ilen; i++ )
|
||||
{
|
||||
pad_done |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
|
||||
pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
|
||||
* where PS must be at least 8 bytes with the value 0xFF. */
|
||||
bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
|
||||
|
||||
/* Read the whole buffer. Set pad_done to nonzero if we find
|
||||
* the 0x00 byte and remember the padding length in pad_count.
|
||||
* If there's a non-0xff byte in the padding, the padding is bad. */
|
||||
for( i = 2; i < ilen; i++ )
|
||||
{
|
||||
pad_done |= if_int( buf[i], 0, 1 );
|
||||
pad_count += if_int( pad_done, 0, 1 );
|
||||
bad |= if_int( pad_done, 0, buf[i] ^ 0xFF );
|
||||
}
|
||||
}
|
||||
|
||||
/* If pad_done is still zero, there's no data, only unfinished padding. */
|
||||
bad |= if_int( pad_done, 0, 1 );
|
||||
|
||||
/* There must be at least 8 bytes of padding. */
|
||||
bad |= size_greater_than( 8, pad_count );
|
||||
|
||||
/* If the padding is valid, set plaintext_size to the number of
|
||||
* remaining bytes after stripping the padding. If the padding
|
||||
* is invalid, avoid leaking this fact through the size of the
|
||||
* output: use the maximum message size that fits in the output
|
||||
* buffer. Do it without branches to avoid leaking the padding
|
||||
* validity through timing. RSA keys are small enough that all the
|
||||
* size_t values involved fit in unsigned int. */
|
||||
plaintext_size = if_int( bad,
|
||||
(unsigned) plaintext_max_size,
|
||||
(unsigned) ( ilen - pad_count - 3 ) );
|
||||
|
||||
/* Set output_too_large to 0 if the plaintext fits in the output
|
||||
* buffer and to 1 otherwise. */
|
||||
output_too_large = size_greater_than( plaintext_size,
|
||||
plaintext_max_size );
|
||||
|
||||
/* Set ret without branches to avoid timing attacks. Return:
|
||||
* - INVALID_PADDING if the padding is bad (bad != 0).
|
||||
* - OUTPUT_TOO_LARGE if the padding is good but the decrypted
|
||||
* plaintext does not fit in the output buffer.
|
||||
* - 0 if the padding is correct. */
|
||||
ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
|
||||
if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
|
||||
0 ) );
|
||||
|
||||
/* If the padding is bad or the plaintext is too large, zero the
|
||||
* data that we're about to copy to the output buffer.
|
||||
* We need to copy the same amount of data
|
||||
* from the same buffer whether the padding is good or not to
|
||||
* avoid leaking the padding validity through overall timing or
|
||||
* through memory or cache access patterns. */
|
||||
bad = all_or_nothing_int( bad | output_too_large );
|
||||
for( i = 11; i < ilen; i++ )
|
||||
buf[i] &= ~bad;
|
||||
|
||||
/* If the plaintext is too large, truncate it to the buffer size.
|
||||
* Copy anyway to avoid revealing the length through timing, because
|
||||
* revealing the length is as bad as revealing the padding validity
|
||||
* for a Bleichenbacher attack. */
|
||||
plaintext_size = if_int( output_too_large,
|
||||
(unsigned) plaintext_max_size,
|
||||
(unsigned) plaintext_size );
|
||||
|
||||
/* Move the plaintext to the leftmost position where it can start in
|
||||
* the working buffer, i.e. make it start plaintext_max_size from
|
||||
* the end of the buffer. Do this with a memory access trace that
|
||||
* does not depend on the plaintext size. After this move, the
|
||||
* starting location of the plaintext is no longer sensitive
|
||||
* information. */
|
||||
mem_move_to_left( buf + ilen - plaintext_max_size,
|
||||
plaintext_max_size,
|
||||
plaintext_max_size - plaintext_size );
|
||||
|
||||
/* Finally copy the decrypted plaintext plus trailing zeros into the output
|
||||
* buffer. If output_max_len is 0, then output may be an invalid pointer
|
||||
* and the result of memcpy() would be undefined; prevent undefined
|
||||
* behavior making sure to depend only on output_max_len (the size of the
|
||||
* user-provided output buffer), which is independent from plaintext
|
||||
* length, validity of padding, success of the decryption, and other
|
||||
* secrets. */
|
||||
if( output_max_len != 0 )
|
||||
memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
|
||||
|
||||
/* Report the amount of data we copied to the output buffer. In case
|
||||
* of errors (bad padding or output too large), the value of *olen
|
||||
* when this function returns is not specified. Making it equivalent
|
||||
* to the good case limits the risks of leaking the padding validity. */
|
||||
*olen = plaintext_size;
|
||||
ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( mode, buf, ilen,
|
||||
output, output_max_len, olen );
|
||||
|
||||
cleanup:
|
||||
mbedtls_platform_zeroize( buf, sizeof( buf ) );
|
||||
|
@ -2162,7 +1933,7 @@ int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
|
|||
MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
|
||||
|
||||
if( mbedtls_safer_memcmp( verif, sig, ctx->len ) != 0 )
|
||||
if( mbedtls_ct_memcmp( verif, sig, ctx->len ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
|
||||
goto cleanup;
|
||||
|
@ -2460,7 +2231,7 @@ int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
|
|||
* Compare
|
||||
*/
|
||||
|
||||
if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
|
||||
if( ( ret = mbedtls_ct_memcmp( encoded, encoded_expected,
|
||||
sig_len ) ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include "mbedtls/ssl_internal.h"
|
||||
#include "mbedtls/debug.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#if defined(MBEDTLS_USE_PSA_CRYPTO)
|
||||
#include "mbedtls/psa_util.h"
|
||||
|
@ -1458,9 +1459,9 @@ static int ssl_parse_renegotiation_info( mbedtls_ssl_context *ssl,
|
|||
/* Check verify-data in constant-time. The length OTOH is no secret */
|
||||
if( len != 1 + ssl->verify_data_len * 2 ||
|
||||
buf[0] != ssl->verify_data_len * 2 ||
|
||||
mbedtls_ssl_safer_memcmp( buf + 1,
|
||||
mbedtls_ct_memcmp( buf + 1,
|
||||
ssl->own_verify_data, ssl->verify_data_len ) != 0 ||
|
||||
mbedtls_ssl_safer_memcmp( buf + 1 + ssl->verify_data_len,
|
||||
mbedtls_ct_memcmp( buf + 1 + ssl->verify_data_len,
|
||||
ssl->peer_verify_data, ssl->verify_data_len ) != 0 )
|
||||
{
|
||||
MBEDTLS_SSL_DEBUG_MSG( 1, ( "non-matching renegotiation info" ) );
|
||||
|
|
|
@ -36,6 +36,7 @@
|
|||
#include "mbedtls/ssl_internal.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -224,7 +225,7 @@ int mbedtls_ssl_cookie_check( void *p_ctx,
|
|||
if( ret != 0 )
|
||||
return( ret );
|
||||
|
||||
if( mbedtls_ssl_safer_memcmp( cookie + 4, ref_hmac, sizeof( ref_hmac ) ) != 0 )
|
||||
if( mbedtls_ct_memcmp( cookie + 4, ref_hmac, sizeof( ref_hmac ) ) != 0 )
|
||||
return( -1 );
|
||||
|
||||
#if defined(MBEDTLS_HAVE_TIME)
|
||||
|
|
|
@ -1,100 +0,0 @@
|
|||
/**
|
||||
* \file ssl_invasive.h
|
||||
*
|
||||
* \brief SSL module: interfaces for invasive testing only.
|
||||
*
|
||||
* The interfaces in this file are intended for testing purposes only.
|
||||
* They SHOULD NOT be made available in library integrations except when
|
||||
* building the library for testing.
|
||||
*/
|
||||
/*
|
||||
* Copyright The Mbed TLS Contributors
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MBEDTLS_SSL_INVASIVE_H
|
||||
#define MBEDTLS_SSL_INVASIVE_H
|
||||
|
||||
#include "common.h"
|
||||
#include "mbedtls/md.h"
|
||||
|
||||
#if defined(MBEDTLS_TEST_HOOKS) && \
|
||||
defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
/** \brief Compute the HMAC of variable-length data with constant flow.
|
||||
*
|
||||
* This function computes the HMAC of the concatenation of \p add_data and \p
|
||||
* data, and does with a code flow and memory access pattern that does not
|
||||
* depend on \p data_len_secret, but only on \p min_data_len and \p
|
||||
* max_data_len. In particular, this function always reads exactly \p
|
||||
* max_data_len bytes from \p data.
|
||||
*
|
||||
* \param ctx The HMAC context. It must have keys configured
|
||||
* with mbedtls_md_hmac_starts() and use one of the
|
||||
* following hashes: SHA-384, SHA-256, SHA-1 or MD-5.
|
||||
* It is reset using mbedtls_md_hmac_reset() after
|
||||
* the computation is complete to prepare for the
|
||||
* next computation.
|
||||
* \param add_data The additional data prepended to \p data. This
|
||||
* must point to a readable buffer of \p add_data_len
|
||||
* bytes.
|
||||
* \param add_data_len The length of \p add_data in bytes.
|
||||
* \param data The data appended to \p add_data. This must point
|
||||
* to a readable buffer of \p max_data_len bytes.
|
||||
* \param data_len_secret The length of the data to process in \p data.
|
||||
* This must be no less than \p min_data_len and no
|
||||
* greater than \p max_data_len.
|
||||
* \param min_data_len The minimal length of \p data in bytes.
|
||||
* \param max_data_len The maximal length of \p data in bytes.
|
||||
* \param output The HMAC will be written here. This must point to
|
||||
* a writable buffer of sufficient size to hold the
|
||||
* HMAC value.
|
||||
*
|
||||
* \retval 0
|
||||
* Success.
|
||||
* \retval MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED
|
||||
* The hardware accelerator failed.
|
||||
*/
|
||||
int mbedtls_ssl_cf_hmac(
|
||||
mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data, size_t add_data_len,
|
||||
const unsigned char *data, size_t data_len_secret,
|
||||
size_t min_data_len, size_t max_data_len,
|
||||
unsigned char *output );
|
||||
|
||||
/** \brief Copy data from a secret position with constant flow.
|
||||
*
|
||||
* This function copies \p len bytes from \p src_base + \p offset_secret to \p
|
||||
* dst, with a code flow and memory access pattern that does not depend on \p
|
||||
* offset_secret, but only on \p offset_min, \p offset_max and \p len.
|
||||
*
|
||||
* \param dst The destination buffer. This must point to a writable
|
||||
* buffer of at least \p len bytes.
|
||||
* \param src_base The base of the source buffer. This must point to a
|
||||
* readable buffer of at least \p offset_max + \p len
|
||||
* bytes.
|
||||
* \param offset_secret The offset in the source buffer from which to copy.
|
||||
* This must be no less than \p offset_min and no greater
|
||||
* than \p offset_max.
|
||||
* \param offset_min The minimal value of \p offset_secret.
|
||||
* \param offset_max The maximal value of \p offset_secret.
|
||||
* \param len The number of bytes to copy.
|
||||
*/
|
||||
void mbedtls_ssl_cf_memcpy_offset( unsigned char *dst,
|
||||
const unsigned char *src_base,
|
||||
size_t offset_secret,
|
||||
size_t offset_min, size_t offset_max,
|
||||
size_t len );
|
||||
#endif /* MBEDTLS_TEST_HOOKS && MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
#endif /* MBEDTLS_SSL_INVASIVE_H */
|
|
@ -44,8 +44,8 @@
|
|||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/version.h"
|
||||
|
||||
#include "ssl_invasive.h"
|
||||
#include "constant_time_internal.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -1043,242 +1043,6 @@ int mbedtls_ssl_encrypt_buf( mbedtls_ssl_context *ssl,
|
|||
return( 0 );
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
|
||||
/*
|
||||
* Turn a bit into a mask:
|
||||
* - if bit == 1, return the all-bits 1 mask, aka (size_t) -1
|
||||
* - if bit == 0, return the all-bits 0 mask, aka 0
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static size_t mbedtls_ssl_cf_mask_from_bit( size_t bit )
|
||||
{
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
return -bit;
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow mask generation for "less than" comparison:
|
||||
* - if x < y, return all bits 1, that is (size_t) -1
|
||||
* - otherwise, return all bits 0, that is 0
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static size_t mbedtls_ssl_cf_mask_lt( size_t x, size_t y )
|
||||
{
|
||||
/* This has the most significant bit set if and only if x < y */
|
||||
const size_t sub = x - y;
|
||||
|
||||
/* sub1 = (x < y) ? 1 : 0 */
|
||||
const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
|
||||
|
||||
/* mask = (x < y) ? 0xff... : 0x00... */
|
||||
const size_t mask = mbedtls_ssl_cf_mask_from_bit( sub1 );
|
||||
|
||||
return( mask );
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow mask generation for "greater or equal" comparison:
|
||||
* - if x >= y, return all bits 1, that is (size_t) -1
|
||||
* - otherwise, return all bits 0, that is 0
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations using masks.
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static size_t mbedtls_ssl_cf_mask_ge( size_t x, size_t y )
|
||||
{
|
||||
return( ~mbedtls_ssl_cf_mask_lt( x, y ) );
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow boolean "equal" comparison:
|
||||
* return x == y
|
||||
*
|
||||
* This function can be used to write constant-time code by replacing branches
|
||||
* with bit operations - it can be used in conjunction with
|
||||
* mbedtls_ssl_cf_mask_from_bit().
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static size_t mbedtls_ssl_cf_bool_eq( size_t x, size_t y )
|
||||
{
|
||||
/* diff = 0 if x == y, non-zero otherwise */
|
||||
const size_t diff = x ^ y;
|
||||
|
||||
/* MSVC has a warning about unary minus on unsigned integer types,
|
||||
* but this is well-defined and precisely what we want to do here. */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
|
||||
/* diff_msb's most significant bit is equal to x != y */
|
||||
const size_t diff_msb = ( diff | -diff );
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
|
||||
/* diff1 = (x != y) ? 1 : 0 */
|
||||
const size_t diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
|
||||
|
||||
return( 1 ^ diff1 );
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow conditional memcpy:
|
||||
* - if c1 == c2, equivalent to memcpy(dst, src, len),
|
||||
* - otherwise, a no-op,
|
||||
* but with execution flow independent of the values of c1 and c2.
|
||||
*
|
||||
* This function is implemented without using comparison operators, as those
|
||||
* might be translated to branches by some compilers on some platforms.
|
||||
*/
|
||||
static void mbedtls_ssl_cf_memcpy_if_eq( unsigned char *dst,
|
||||
const unsigned char *src,
|
||||
size_t len,
|
||||
size_t c1, size_t c2 )
|
||||
{
|
||||
/* mask = c1 == c2 ? 0xff : 0x00 */
|
||||
const size_t equal = mbedtls_ssl_cf_bool_eq( c1, c2 );
|
||||
const unsigned char mask = (unsigned char) mbedtls_ssl_cf_mask_from_bit( equal );
|
||||
|
||||
/* dst[i] = c1 == c2 ? src[i] : dst[i] */
|
||||
for( size_t i = 0; i < len; i++ )
|
||||
dst[i] = ( src[i] & mask ) | ( dst[i] & ~mask );
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute HMAC of variable-length data with constant flow.
|
||||
*
|
||||
* Only works with MD-5, SHA-1, SHA-256 and SHA-384.
|
||||
* (Otherwise, computation of block_size needs to be adapted.)
|
||||
*/
|
||||
MBEDTLS_STATIC_TESTABLE int mbedtls_ssl_cf_hmac(
|
||||
mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data, size_t add_data_len,
|
||||
const unsigned char *data, size_t data_len_secret,
|
||||
size_t min_data_len, size_t max_data_len,
|
||||
unsigned char *output )
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses the md_clone()
|
||||
* extension to the MD API in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
|
||||
*
|
||||
* We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
|
||||
* minlen, then cloning the context, and for each byte up to maxlen
|
||||
* finishing up the hash computation, keeping only the correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
|
||||
/* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
|
||||
* all of which have the same block size except SHA-384. */
|
||||
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
|
||||
const unsigned char * const ikey = ctx->hmac_ctx;
|
||||
const unsigned char * const okey = ikey + block_size;
|
||||
const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
|
||||
|
||||
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
|
||||
mbedtls_md_context_t aux;
|
||||
size_t offset;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
mbedtls_md_init( &aux );
|
||||
|
||||
#define MD_CHK( func_call ) \
|
||||
do { \
|
||||
ret = (func_call); \
|
||||
if( ret != 0 ) \
|
||||
goto cleanup; \
|
||||
} while( 0 )
|
||||
|
||||
MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
|
||||
|
||||
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
|
||||
* so we can start directly with the message */
|
||||
MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for( offset = min_data_len; offset <= max_data_len; offset++ )
|
||||
{
|
||||
MD_CHK( mbedtls_md_clone( &aux, ctx ) );
|
||||
MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ssl_cf_memcpy_if_eq( output, aux_out, hash_size,
|
||||
offset, data_len_secret );
|
||||
|
||||
if( offset < max_data_len )
|
||||
MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
|
||||
}
|
||||
|
||||
/* The context needs to finish() before it starts() again */
|
||||
MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
MD_CHK( mbedtls_md_starts( ctx ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
|
||||
MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
|
||||
MD_CHK( mbedtls_md_finish( ctx, output ) );
|
||||
|
||||
/* Done, get ready for next time */
|
||||
MD_CHK( mbedtls_md_hmac_reset( ctx ) );
|
||||
|
||||
#undef MD_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_md_free( &aux );
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-flow memcpy from variable position in buffer.
|
||||
* - functionally equivalent to memcpy(dst, src + offset_secret, len)
|
||||
* - but with execution flow independent from the value of offset_secret.
|
||||
*/
|
||||
MBEDTLS_STATIC_TESTABLE void mbedtls_ssl_cf_memcpy_offset(
|
||||
unsigned char *dst,
|
||||
const unsigned char *src_base,
|
||||
size_t offset_secret,
|
||||
size_t offset_min, size_t offset_max,
|
||||
size_t len )
|
||||
{
|
||||
size_t offset;
|
||||
|
||||
for( offset = offset_min; offset <= offset_max; offset++ )
|
||||
{
|
||||
mbedtls_ssl_cf_memcpy_if_eq( dst, src_base + offset, len,
|
||||
offset, offset_secret );
|
||||
}
|
||||
}
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
|
||||
|
||||
int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
||||
mbedtls_ssl_transform *transform,
|
||||
mbedtls_record *rec )
|
||||
|
@ -1518,7 +1282,7 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
*
|
||||
* Afterwards, we know that data + data_len is followed by at
|
||||
* least maclen Bytes, which justifies the call to
|
||||
* mbedtls_ssl_safer_memcmp() below.
|
||||
* mbedtls_ct_memcmp() below.
|
||||
*
|
||||
* Further, we still know that data_len > minlen */
|
||||
rec->data_len -= transform->maclen;
|
||||
|
@ -1541,7 +1305,7 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
transform->maclen );
|
||||
|
||||
/* Compare expected MAC with MAC at the end of the record. */
|
||||
if( mbedtls_ssl_safer_memcmp( data + rec->data_len, mac_expect,
|
||||
if( mbedtls_ct_memcmp( data + rec->data_len, mac_expect,
|
||||
transform->maclen ) != 0 )
|
||||
{
|
||||
MBEDTLS_SSL_DEBUG_MSG( 1, ( "message mac does not match" ) );
|
||||
|
@ -1620,7 +1384,7 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
|
||||
if( auth_done == 1 )
|
||||
{
|
||||
const size_t mask = mbedtls_ssl_cf_mask_ge(
|
||||
const size_t mask = mbedtls_ct_size_mask_ge(
|
||||
rec->data_len,
|
||||
padlen + 1 );
|
||||
correct &= mask;
|
||||
|
@ -1640,7 +1404,7 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
}
|
||||
#endif
|
||||
|
||||
const size_t mask = mbedtls_ssl_cf_mask_ge(
|
||||
const size_t mask = mbedtls_ct_size_mask_ge(
|
||||
rec->data_len,
|
||||
transform->maclen + padlen + 1 );
|
||||
correct &= mask;
|
||||
|
@ -1696,18 +1460,18 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
/* pad_count += (idx >= padding_idx) &&
|
||||
* (check[idx] == padlen - 1);
|
||||
*/
|
||||
const size_t mask = mbedtls_ssl_cf_mask_ge( idx, padding_idx );
|
||||
const size_t equal = mbedtls_ssl_cf_bool_eq( check[idx],
|
||||
const size_t mask = mbedtls_ct_size_mask_ge( idx, padding_idx );
|
||||
const size_t equal = mbedtls_ct_size_bool_eq( check[idx],
|
||||
padlen - 1 );
|
||||
pad_count += mask & equal;
|
||||
}
|
||||
correct &= mbedtls_ssl_cf_bool_eq( pad_count, padlen );
|
||||
correct &= mbedtls_ct_size_bool_eq( pad_count, padlen );
|
||||
|
||||
#if defined(MBEDTLS_SSL_DEBUG_ALL)
|
||||
if( padlen > 0 && correct == 0 )
|
||||
MBEDTLS_SSL_DEBUG_MSG( 1, ( "bad padding byte detected" ) );
|
||||
#endif
|
||||
padlen &= mbedtls_ssl_cf_mask_from_bit( correct );
|
||||
padlen &= mbedtls_ct_size_mask( correct );
|
||||
}
|
||||
else
|
||||
#endif /* MBEDTLS_SSL_PROTO_TLS1 || MBEDTLS_SSL_PROTO_TLS1_1 || \
|
||||
|
@ -1791,17 +1555,17 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
const size_t max_len = rec->data_len + padlen;
|
||||
const size_t min_len = ( max_len > 256 ) ? max_len - 256 : 0;
|
||||
|
||||
ret = mbedtls_ssl_cf_hmac( &transform->md_ctx_dec,
|
||||
ret = mbedtls_ct_hmac( &transform->md_ctx_dec,
|
||||
add_data, add_data_len,
|
||||
data, rec->data_len, min_len, max_len,
|
||||
mac_expect );
|
||||
if( ret != 0 )
|
||||
{
|
||||
MBEDTLS_SSL_DEBUG_RET( 1, "mbedtls_ssl_cf_hmac", ret );
|
||||
MBEDTLS_SSL_DEBUG_RET( 1, "mbedtls_ct_hmac", ret );
|
||||
return( ret );
|
||||
}
|
||||
|
||||
mbedtls_ssl_cf_memcpy_offset( mac_peer, data,
|
||||
mbedtls_ct_memcpy_offset( mac_peer, data,
|
||||
rec->data_len,
|
||||
min_len, max_len,
|
||||
transform->maclen );
|
||||
|
@ -1819,7 +1583,7 @@ int mbedtls_ssl_decrypt_buf( mbedtls_ssl_context const *ssl,
|
|||
MBEDTLS_SSL_DEBUG_BUF( 4, "message mac", mac_peer, transform->maclen );
|
||||
#endif
|
||||
|
||||
if( mbedtls_ssl_safer_memcmp( mac_peer, mac_expect,
|
||||
if( mbedtls_ct_memcmp( mac_peer, mac_expect,
|
||||
transform->maclen ) != 0 )
|
||||
{
|
||||
#if defined(MBEDTLS_SSL_DEBUG_ALL)
|
||||
|
|
|
@ -34,6 +34,8 @@
|
|||
#include "mbedtls/debug.h"
|
||||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "constant_time_internal.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -196,7 +198,7 @@ static int ssl_parse_renegotiation_info( mbedtls_ssl_context *ssl,
|
|||
/* Check verify-data in constant-time. The length OTOH is no secret */
|
||||
if( len != 1 + ssl->verify_data_len ||
|
||||
buf[0] != ssl->verify_data_len ||
|
||||
mbedtls_ssl_safer_memcmp( buf + 1, ssl->peer_verify_data,
|
||||
mbedtls_ct_memcmp( buf + 1, ssl->peer_verify_data,
|
||||
ssl->verify_data_len ) != 0 )
|
||||
{
|
||||
MBEDTLS_SSL_DEBUG_MSG( 1, ( "non-matching renegotiation info" ) );
|
||||
|
@ -3971,16 +3973,7 @@ static int ssl_parse_encrypted_pms( mbedtls_ssl_context *ssl,
|
|||
diff |= peer_pms[1] ^ ver[1];
|
||||
|
||||
/* mask = diff ? 0xff : 0x00 using bit operations to avoid branches */
|
||||
/* MSVC has a warning about unary minus on unsigned, but this is
|
||||
* well-defined and precisely what we want to do here */
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( push )
|
||||
#pragma warning( disable : 4146 )
|
||||
#endif
|
||||
mask = - ( ( diff | - diff ) >> ( sizeof( unsigned int ) * 8 - 1 ) );
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning( pop )
|
||||
#endif
|
||||
mask = mbedtls_ct_uint_mask( diff );
|
||||
|
||||
/*
|
||||
* Protection against Bleichenbacher's attack: invalid PKCS#1 v1.5 padding
|
||||
|
@ -4063,7 +4056,7 @@ static int ssl_parse_client_psk_identity( mbedtls_ssl_context *ssl, unsigned cha
|
|||
/* Identity is not a big secret since clients send it in the clear,
|
||||
* but treat it carefully anyway, just in case */
|
||||
if( n != ssl->conf->psk_identity_len ||
|
||||
mbedtls_ssl_safer_memcmp( ssl->conf->psk_identity, *p, n ) != 0 )
|
||||
mbedtls_ct_memcmp( ssl->conf->psk_identity, *p, n ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_SSL_UNKNOWN_IDENTITY;
|
||||
}
|
||||
|
|
|
@ -43,6 +43,7 @@
|
|||
#include "mbedtls/error.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/version.h"
|
||||
#include "mbedtls/constant_time.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -3603,7 +3604,7 @@ int mbedtls_ssl_parse_finished( mbedtls_ssl_context *ssl )
|
|||
return( MBEDTLS_ERR_SSL_BAD_HS_FINISHED );
|
||||
}
|
||||
|
||||
if( mbedtls_ssl_safer_memcmp( ssl->in_msg + mbedtls_ssl_hs_hdr_len( ssl ),
|
||||
if( mbedtls_ct_memcmp( ssl->in_msg + mbedtls_ssl_hs_hdr_len( ssl ),
|
||||
buf, hash_len ) != 0 )
|
||||
{
|
||||
MBEDTLS_SSL_DEBUG_MSG( 1, ( "bad finished message" ) );
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#include <mbedtls/debug.h>
|
||||
#include <ssl_tls13_keys.h>
|
||||
|
||||
#include <ssl_invasive.h>
|
||||
#include <constant_time_internal.h>
|
||||
|
||||
#include <test/constant_flow.h>
|
||||
|
||||
|
@ -4428,7 +4428,7 @@ void resize_buffers_renegotiate_mfl( int mfl, int legacy_renegotiation,
|
|||
void ssl_cf_hmac( int hash )
|
||||
{
|
||||
/*
|
||||
* Test the function mbedtls_ssl_cf_hmac() against a reference
|
||||
* Test the function mbedtls_ct_hmac() against a reference
|
||||
* implementation.
|
||||
*/
|
||||
mbedtls_md_context_t ctx, ref_ctx;
|
||||
|
@ -4487,7 +4487,7 @@ void ssl_cf_hmac( int hash )
|
|||
|
||||
/* Get the function's result */
|
||||
TEST_CF_SECRET( &in_len, sizeof( in_len ) );
|
||||
TEST_EQUAL( 0, mbedtls_ssl_cf_hmac( &ctx, add_data, sizeof( add_data ),
|
||||
TEST_EQUAL( 0, mbedtls_ct_hmac( &ctx, add_data, sizeof( add_data ),
|
||||
data, in_len,
|
||||
min_in_len, max_in_len,
|
||||
out ) );
|
||||
|
@ -4537,7 +4537,7 @@ void ssl_cf_memcpy_offset( int offset_min, int offset_max, int len )
|
|||
mbedtls_test_set_step( (int) secret );
|
||||
|
||||
TEST_CF_SECRET( &secret, sizeof( secret ) );
|
||||
mbedtls_ssl_cf_memcpy_offset( dst, src, secret,
|
||||
mbedtls_ct_memcpy_offset( dst, src, secret,
|
||||
offset_min, offset_max, len );
|
||||
TEST_CF_PUBLIC( &secret, sizeof( secret ) );
|
||||
TEST_CF_PUBLIC( dst, len );
|
||||
|
|
|
@ -163,6 +163,7 @@
|
|||
<ClInclude Include="..\..\include\mbedtls\compat-1.3.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\config.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\config_psa.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\constant_time.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\ctr_drbg.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\debug.h" />
|
||||
<ClInclude Include="..\..\include\mbedtls\des.h" />
|
||||
|
@ -256,6 +257,7 @@
|
|||
<ClInclude Include="..\..\library\base64_invasive.h" />
|
||||
<ClInclude Include="..\..\library\check_crypto_config.h" />
|
||||
<ClInclude Include="..\..\library\common.h" />
|
||||
<ClInclude Include="..\..\library\constant_time_internal.h" />
|
||||
<ClInclude Include="..\..\library\ecp_invasive.h" />
|
||||
<ClInclude Include="..\..\library\mps_common.h" />
|
||||
<ClInclude Include="..\..\library\mps_error.h" />
|
||||
|
@ -275,7 +277,6 @@
|
|||
<ClInclude Include="..\..\library\psa_crypto_se.h" />
|
||||
<ClInclude Include="..\..\library\psa_crypto_slot_management.h" />
|
||||
<ClInclude Include="..\..\library\psa_crypto_storage.h" />
|
||||
<ClInclude Include="..\..\library\ssl_invasive.h" />
|
||||
<ClInclude Include="..\..\library\ssl_tls13_keys.h" />
|
||||
<ClInclude Include="..\..\3rdparty\everest\include\everest\everest.h" />
|
||||
<ClInclude Include="..\..\3rdparty\everest\include\everest\Hacl_Curve25519.h" />
|
||||
|
@ -300,6 +301,7 @@
|
|||
<ClCompile Include="..\..\library\cipher.c" />
|
||||
<ClCompile Include="..\..\library\cipher_wrap.c" />
|
||||
<ClCompile Include="..\..\library\cmac.c" />
|
||||
<ClCompile Include="..\..\library\constant_time.c" />
|
||||
<ClCompile Include="..\..\library\ctr_drbg.c" />
|
||||
<ClCompile Include="..\..\library\debug.c" />
|
||||
<ClCompile Include="..\..\library\des.c" />
|
||||
|
|
Loading…
Reference in a new issue