Merge remote-tracking branch 'public/pr/2886' into baremetal

This commit is contained in:
Simon Butcher 2020-01-08 17:53:43 +00:00
commit 4b3b8c208e
7 changed files with 376 additions and 123 deletions

View file

@ -41,6 +41,7 @@
#define MBEDTLS_AES_FEWER_TABLES
#define MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH
#define MBEDTLS_AES_ONLY_ENCRYPT
#define MBEDTLS_AES_SCA_COUNTERMEASURES
#define MBEDTLS_CCM_C
/* Asymmetric crypto: Single-curve ECC only. */

View file

@ -634,6 +634,23 @@
*/
//#define MBEDTLS_AES_ONLY_ENCRYPT
/**
* \def MBEDTLS_AES_SCA_COUNTERMEASURES
*
* Add countermeasures against possible side-channel-attack to AES calculation.
*
* Uncommenting this macro adds additional calculation rounds to AES
* calculation. Additional rounds are using random data and can occur in any
* AES calculation round.
*
* Tradeoff: Uncommenting this increases ROM footprint by ~100 bytes.
* The performance loss is ~50% with 128 bit AES.
*
* This option is dependent of \c MBEDTLS_ENTROPY_HARDWARE_ALT.
*
*/
//#define MBEDTLS_AES_SCA_COUNTERMEASURES
/**
* \def MBEDTLS_CAMELLIA_SMALL_MEMORY
*

View file

@ -85,6 +85,21 @@
}
#endif
/*
* Data structure for AES round data
*/
typedef struct {
uint32_t *rk_ptr; /* Round Key */
uint32_t xy_values[8]; /* X0, X1, X2, X3, Y0, Y1, Y2, Y3 */
} aes_r_data_t;
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
/* Number of additional AES calculation rounds added for SCA CM */
#define AES_SCA_CM_ROUNDS 3
#else /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#define AES_SCA_CM_ROUNDS 0
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_PADLOCK_C) && \
( defined(MBEDTLS_HAVE_X86) || defined(MBEDTLS_PADLOCK_ALIGN16) )
static int aes_padlock_ace = -1;
@ -497,6 +512,96 @@ static void aes_gen_tables( void )
#endif /* MBEDTLS_AES_ROM_TABLES */
/**
* Randomize positions when to use AES SCA countermeasures.
* Each byte indicates one AES round as follows:
* first ( tbl_len - 4 ) bytes are reserved for middle AES rounds:
* -4 high bit = table to use 0x10 for SCA CM data, 0 otherwise
* -4 low bits = offset based on order, 4 for even position, 0 otherwise
* Last 4 bytes for first(2) and final(2) round calculation
* -4 high bit = table to use, 0x10 for SCA CM data, otherwise real data
* -4 low bits = not used
*
* Control data when only real data (R) is used:
* | R | R | R | R | R | R | R | R | Start | Final |
* |0x04|0x00|0x00|0x04|0x00|0x04|0x00|0x04|0x00|0x00|0x00|0x00|
*
* Control data with 5 (F) dummy rounds and randomized start and final round:
* | R | F | R | F | F | R | R | R | R | R | R | START RF| FINAL FR|
* |0x04|0x10|0x04|0x10|0x10|0x00|0x04|0x00|0x04|0x00|0x04|0x00|0x10|0x10|0x00|
*/
static void aes_sca_cm_data_randomize( uint8_t *tbl, uint8_t tbl_len )
{
int i, is_even_pos;
#if AES_SCA_CM_ROUNDS != 0
int is_unique_number;
int num;
#endif
memset( tbl, 0, tbl_len );
#if AES_SCA_CM_ROUNDS != 0
// Randomize SCA CM positions to tbl
for( i = 0; i < AES_SCA_CM_ROUNDS; i++ )
{
is_unique_number = 0;
do
{
is_unique_number++;
num = mbedtls_platform_random_in_range( tbl_len - 4 );
if( is_unique_number > 10 )
{
// prevent forever loop if random returns constant
is_unique_number = 0;
tbl[i] = 0x10; // fake data
}
if( tbl[num] == 0 )
{
is_unique_number = 0;
tbl[num] = 0x10; // fake data
}
} while( is_unique_number != 0 );
}
// randomize control data for start and final round
for( i = 1; i <= 2; i++ )
{
num = mbedtls_platform_random_in_range( 0xff );
if( ( num % 2 ) == 0 )
{
tbl[tbl_len - ( i * 2 - 0 )] = 0x10; // fake data
tbl[tbl_len - ( i * 2 - 1 )] = 0x00; // real data
}
else
{
tbl[tbl_len - ( i * 2 - 0 )] = 0x00; // real data
tbl[tbl_len - ( i * 2 - 1 )] = 0x10; // fake data
}
}
#endif /* AES_SCA_CM_ROUNDS != 0 */
// Fill real AES round data to the remaining places
is_even_pos = 1;
for( i = 0; i < tbl_len - 4; i++ )
{
if( tbl[i] == 0 )
{
if( is_even_pos == 1 )
{
tbl[i] = 0x04; // real data, offset 4
is_even_pos = 0;
}
else
{
tbl[i] = 0x00; // real data, offset 0
is_even_pos = 1;
}
}
}
}
#if defined(MBEDTLS_AES_FEWER_TABLES)
#define ROTL8(x) ( (uint32_t)( ( x ) << 8 ) + (uint32_t)( ( x ) >> 24 ) )
@ -838,108 +943,138 @@ int mbedtls_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx,
#endif /* !MBEDTLS_AES_SETKEY_DEC_ALT */
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
do \
{ \
(X0) = *RK++ ^ AES_FT0( ( (Y0) ) & 0xFF ) ^ \
AES_FT1( ( (Y1) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y2) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y3) >> 24 ) & 0xFF ); \
\
(X1) = *RK++ ^ AES_FT0( ( (Y1) ) & 0xFF ) ^ \
AES_FT1( ( (Y2) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y3) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y0) >> 24 ) & 0xFF ); \
\
(X2) = *RK++ ^ AES_FT0( ( (Y2) ) & 0xFF ) ^ \
AES_FT1( ( (Y3) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y0) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y1) >> 24 ) & 0xFF ); \
\
(X3) = *RK++ ^ AES_FT0( ( (Y3) ) & 0xFF ) ^ \
AES_FT1( ( (Y0) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y1) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y2) >> 24 ) & 0xFF ); \
} while( 0 )
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
do \
{ \
(X0) = *RK++ ^ AES_RT0( ( (Y0) ) & 0xFF ) ^ \
AES_RT1( ( (Y3) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y2) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y1) >> 24 ) & 0xFF ); \
\
(X1) = *RK++ ^ AES_RT0( ( (Y1) ) & 0xFF ) ^ \
AES_RT1( ( (Y0) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y3) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y2) >> 24 ) & 0xFF ); \
\
(X2) = *RK++ ^ AES_RT0( ( (Y2) ) & 0xFF ) ^ \
AES_RT1( ( (Y1) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y0) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y3) >> 24 ) & 0xFF ); \
\
(X3) = *RK++ ^ AES_RT0( ( (Y3) ) & 0xFF ) ^ \
AES_RT1( ( (Y2) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y1) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y0) >> 24 ) & 0xFF ); \
} while( 0 )
/*
* AES-ECB block encryption
*/
#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
static uint32_t *aes_fround( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
{
*X0 = *R++ ^ AES_FT0( ( Y0 ) & 0xFF ) ^
AES_FT1( ( Y1 >> 8 ) & 0xFF ) ^
AES_FT2( ( Y2 >> 16 ) & 0xFF ) ^
AES_FT3( ( Y3 >> 24 ) & 0xFF );
*X1 = *R++ ^ AES_FT0( ( Y1 ) & 0xFF ) ^
AES_FT1( ( Y2 >> 8 ) & 0xFF ) ^
AES_FT2( ( Y3 >> 16 ) & 0xFF ) ^
AES_FT3( ( Y0 >> 24 ) & 0xFF );
*X2 = *R++ ^ AES_FT0( ( Y2 ) & 0xFF ) ^
AES_FT1( ( Y3 >> 8 ) & 0xFF ) ^
AES_FT2( ( Y0 >> 16 ) & 0xFF ) ^
AES_FT3( ( Y1 >> 24 ) & 0xFF );
*X3 = *R++ ^ AES_FT0( ( Y3 ) & 0xFF ) ^
AES_FT1( ( Y0 >> 8 ) & 0xFF ) ^
AES_FT2( ( Y1 >> 16 ) & 0xFF ) ^
AES_FT3( ( Y2 >> 24 ) & 0xFF );
return R;
}
static void aes_fround_final( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
{
*X0 = *R++ ^ ( (uint32_t) FSb[ ( (Y0) ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( (Y1) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( (Y2) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( (Y3) >> 24 ) & 0xFF ] << 24 );
*X1 = *R++ ^ ( (uint32_t) FSb[ ( (Y1) ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( (Y2) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( (Y3) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( (Y0) >> 24 ) & 0xFF ] << 24 );
*X2 = *R++ ^ ( (uint32_t) FSb[ ( (Y2) ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( (Y3) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( (Y0) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( (Y1) >> 24 ) & 0xFF ] << 24 );
*X3 = *R++ ^ ( (uint32_t) FSb[ ( (Y3) ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( (Y0) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( (Y1) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( (Y2) >> 24 ) & 0xFF ] << 24 );
}
int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
int i, j, offset, start_fin_loops = 1;
aes_r_data_t aes_data_real; // real data
#if AES_SCA_CM_ROUNDS != 0
aes_r_data_t aes_data_fake; // fake data
#endif /* AES_SCA_CM_ROUNDS != 0 */
aes_r_data_t *aes_data_ptr; // pointer to aes_data_real or aes_data_fake
aes_r_data_t *aes_data_table[2]; // pointers to real and fake data
int round_ctrl_table_len = ctx->nr - 1 + AES_SCA_CM_ROUNDS + 2 + 2;
// control bytes for AES rounds, reserve based on max ctx->nr
uint8_t round_ctrl_table[ 14 - 1 + AES_SCA_CM_ROUNDS + 2 + 2];
RK = ctx->rk;
aes_data_real.rk_ptr = ctx->rk;
aes_data_table[0] = &aes_data_real;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
#if AES_SCA_CM_ROUNDS != 0
aes_data_table[1] = &aes_data_fake;
aes_data_fake.rk_ptr = ctx->rk;
start_fin_loops = 2;
for( i = 0; i < 4; i++ )
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
#endif
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
// Get randomized AES calculation control bytes
aes_sca_cm_data_randomize( round_ctrl_table, round_ctrl_table_len );
for( i = 0; i < 4; i++ )
{
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) );
for( j = 0; j < start_fin_loops; j++ )
{
aes_data_ptr =
aes_data_table[round_ctrl_table[ round_ctrl_table_len - 4 + j ] >> 4];
aes_data_ptr->xy_values[i] ^= *aes_data_ptr->rk_ptr++;
}
}
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
for( i = 0; i < ( ctx->nr - 1 + AES_SCA_CM_ROUNDS ); i++ )
{
// Read AES control data
aes_data_ptr = aes_data_table[round_ctrl_table[i] >> 4];
offset = round_ctrl_table[i] & 0x0f;
X0 = *RK++ ^ \
( (uint32_t) FSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
aes_data_ptr->rk_ptr = aes_fround( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0 + offset],
&aes_data_ptr->xy_values[1 + offset],
&aes_data_ptr->xy_values[2 + offset],
&aes_data_ptr->xy_values[3 + offset],
aes_data_ptr->xy_values[4 - offset],
aes_data_ptr->xy_values[5 - offset],
aes_data_ptr->xy_values[6 - offset],
aes_data_ptr->xy_values[7 - offset] );
}
X1 = *RK++ ^ \
( (uint32_t) FSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
for( j = 0; j < start_fin_loops; j++ )
{
aes_data_ptr = aes_data_table[round_ctrl_table[ i + j ] >> 4];
aes_fround_final( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0],
&aes_data_ptr->xy_values[1],
&aes_data_ptr->xy_values[2],
&aes_data_ptr->xy_values[3],
aes_data_ptr->xy_values[4],
aes_data_ptr->xy_values[5],
aes_data_ptr->xy_values[6],
aes_data_ptr->xy_values[7] );
}
X2 = *RK++ ^ \
( (uint32_t) FSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) FSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
for( i = 0; i < 4; i++ )
{
PUT_UINT32_LE( aes_data_real.xy_values[i], output, ( i * 4 ) );
}
return( 0 );
}
@ -960,56 +1095,133 @@ void mbedtls_aes_encrypt( mbedtls_aes_context *ctx,
#if !defined(MBEDTLS_AES_DECRYPT_ALT)
#if !defined(MBEDTLS_AES_ONLY_ENCRYPT)
static uint32_t *aes_rround( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
{
*X0 = *R++ ^ AES_RT0( ( Y0 ) & 0xFF ) ^
AES_RT1( ( Y3 >> 8 ) & 0xFF ) ^
AES_RT2( ( Y2 >> 16 ) & 0xFF ) ^
AES_RT3( ( Y1 >> 24 ) & 0xFF );
*X1 = *R++ ^ AES_RT0( ( Y1 ) & 0xFF ) ^
AES_RT1( ( Y0 >> 8 ) & 0xFF ) ^
AES_RT2( ( Y3 >> 16 ) & 0xFF ) ^
AES_RT3( ( Y2 >> 24 ) & 0xFF );
*X2 = *R++ ^ AES_RT0( ( Y2 ) & 0xFF ) ^
AES_RT1( ( Y1 >> 8 ) & 0xFF ) ^
AES_RT2( ( Y0 >> 16 ) & 0xFF ) ^
AES_RT3( ( Y3 >> 24 ) & 0xFF );
*X3 = *R++ ^ AES_RT0( ( Y3 ) & 0xFF ) ^
AES_RT1( ( Y2 >> 8 ) & 0xFF ) ^
AES_RT2( ( Y1 >> 16 ) & 0xFF ) ^
AES_RT3( ( Y0 >> 24 ) & 0xFF );
return R;
}
static void aes_rround_final( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
{
*X0 = *R++ ^ ( (uint32_t) RSb[ ( (Y0) ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( (Y3) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( (Y2) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( (Y1) >> 24 ) & 0xFF ] << 24 );
*X1 = *R++ ^ ( (uint32_t) RSb[ ( (Y1) ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( (Y0) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( (Y3) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( (Y2) >> 24 ) & 0xFF ] << 24 );
*X2 = *R++ ^ ( (uint32_t) RSb[ ( (Y2) ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( (Y1) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( (Y0) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( (Y3) >> 24 ) & 0xFF ] << 24 );
*X3 = *R++ ^ ( (uint32_t) RSb[ ( (Y3) ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( (Y2) >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( (Y1) >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( (Y0) >> 24 ) & 0xFF ] << 24 );
}
int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
int i, j, offset, start_fin_loops = 1;
aes_r_data_t aes_data_real; // real data
#if AES_SCA_CM_ROUNDS != 0
aes_r_data_t aes_data_fake; // fake data
#endif /* AES_SCA_CM_ROUNDS != 0 */
aes_r_data_t *aes_data_ptr; // pointer to aes_data_real or aes_data_fake
aes_r_data_t *aes_data_table[2]; // pointers to real and fake data
int round_ctrl_table_len = ctx->nr - 1 + AES_SCA_CM_ROUNDS + 2 + 2;
// control bytes for AES rounds, reserve based on max ctx->nr
uint8_t round_ctrl_table[ 14 - 1 + AES_SCA_CM_ROUNDS + 2 + 2 ];
RK = ctx->rk;
aes_data_real.rk_ptr = ctx->rk;
aes_data_table[0] = &aes_data_real;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
#if AES_SCA_CM_ROUNDS != 0
aes_data_table[1] = &aes_data_fake;
aes_data_fake.rk_ptr = ctx->rk;
start_fin_loops = 2;
for( i = 0; i < 4; i++ )
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
#endif
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
// Get randomized AES calculation control bytes
aes_sca_cm_data_randomize( round_ctrl_table, round_ctrl_table_len );
for( i = 0; i < 4; i++ )
{
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) );
for( j = 0; j < start_fin_loops; j++ )
{
aes_data_ptr =
aes_data_table[round_ctrl_table[ round_ctrl_table_len - 4 + j ] >> 4];
aes_data_ptr->xy_values[i] ^= *aes_data_ptr->rk_ptr++;
}
}
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
for( i = 0; i < ( ctx->nr - 1 + AES_SCA_CM_ROUNDS ); i++ )
{
// Read AES control data
aes_data_ptr = aes_data_table[round_ctrl_table[i] >> 4];
offset = round_ctrl_table[i] & 0x0f;
X0 = *RK++ ^ \
( (uint32_t) RSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
aes_data_ptr->rk_ptr = aes_rround( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0 + offset],
&aes_data_ptr->xy_values[1 + offset],
&aes_data_ptr->xy_values[2 + offset],
&aes_data_ptr->xy_values[3 + offset],
aes_data_ptr->xy_values[4 - offset],
aes_data_ptr->xy_values[5 - offset],
aes_data_ptr->xy_values[6 - offset],
aes_data_ptr->xy_values[7 - offset] );
}
X1 = *RK++ ^ \
( (uint32_t) RSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
for( j = 0; j < start_fin_loops; j++ )
{
aes_data_ptr = aes_data_table[round_ctrl_table[ i + j ] >> 4];
aes_rround_final( aes_data_ptr->rk_ptr,
&aes_data_ptr->xy_values[0],
&aes_data_ptr->xy_values[1],
&aes_data_ptr->xy_values[2],
&aes_data_ptr->xy_values[3],
aes_data_ptr->xy_values[4],
aes_data_ptr->xy_values[5],
aes_data_ptr->xy_values[6],
aes_data_ptr->xy_values[7] );
}
X2 = *RK++ ^ \
( (uint32_t) RSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) RSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
for( i = 0; i < 4; i++ )
{
PUT_UINT32_LE( aes_data_real.xy_values[i], output, ( i * 4 ) );
}
return( 0 );
}

View file

@ -270,6 +270,9 @@ static const char *features[] = {
#if defined(MBEDTLS_AES_ONLY_ENCRYPT)
"MBEDTLS_AES_ONLY_ENCRYPT",
#endif /* MBEDTLS_AES_ONLY_ENCRYPT */
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
"MBEDTLS_AES_SCA_COUNTERMEASURES",
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_CAMELLIA_SMALL_MEMORY)
"MBEDTLS_CAMELLIA_SMALL_MEMORY",
#endif /* MBEDTLS_CAMELLIA_SMALL_MEMORY */

View file

@ -762,6 +762,14 @@ int query_config( const char *config )
}
#endif /* MBEDTLS_AES_ONLY_ENCRYPT */
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
if( strcmp( "MBEDTLS_AES_SCA_COUNTERMEASURES", config ) == 0 )
{
MACRO_EXPANSION_TO_STR( MBEDTLS_AES_SCA_COUNTERMEASURES );
return( 0 );
}
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_CAMELLIA_SMALL_MEMORY)
if( strcmp( "MBEDTLS_CAMELLIA_SMALL_MEMORY", config ) == 0 )
{

View file

@ -53,6 +53,7 @@
# MBEDTLS_NO_64BIT_MULTIPLICATION
# MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH
# MBEDTLS_AES_ONLY_ENCRYPT
# MBEDTLS_AES_SCA_COUNTERMEASURES
# and any symbol beginning _ALT
#
@ -130,6 +131,7 @@ MBEDTLS_NO_64BIT_MULTIPLICATION
MBEDTLS_USE_TINYCRYPT
MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH
MBEDTLS_AES_ONLY_ENCRYPT
MBEDTLS_AES_SCA_COUNTERMEASURES
_ALT\s*$
);

View file

@ -1294,6 +1294,16 @@ component_test_aes_fewer_tables_and_rom_tables () {
make test
}
component_test_aes_sca_countermeasures () {
msg "build: default config + MBEDTLS_AES_SCA_COUNTERMEASURES + MBEDTLS_ENTROPY_HARDWARE_ALT + !MBEDTLS_AESNI_C"
scripts/config.pl set MBEDTLS_AES_SCA_COUNTERMEASURES
scripts/config.pl set MBEDTLS_ENTROPY_HARDWARE_ALT
scripts/config.pl unset MBEDTLS_AESNI_C
msg "test: AES SCA countermeasures"
make test
}
component_test_make_shared () {
msg "build/test: make shared" # ~ 40s
make SHARED=1 all check