Apply feedback to ECP internal interface documentation

This commit is contained in:
Janos Follath 2016-12-08 16:15:51 +00:00 committed by Simon Butcher
parent aab9efb4ce
commit 5634b8609b

View file

@ -25,12 +25,8 @@
/*
* References:
*
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
* RFC 4492 for the related TLS structures and constants
*
* [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
* [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
* <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
*
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
@ -41,6 +37,24 @@
* render ECC resistant against Side Channel Attacks. IACR Cryptology
* ePrint Archive, 2004, vol. 2004, p. 342.
* <http://eprint.iacr.org/2004/342.pdf>
*
* [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
* <http://www.secg.org/sec2-v2.pdf>
*
* [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
* Curve Cryptography.
*
* [6] Digital Signature Standard (DSS), FIPS 186-4.
* <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
*
* [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
* Security (TLS), RFC 4492.
* <https://tools.ietf.org/search/rfc4492>
*
* [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
*
* [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
* Springer Science & Business Media, 1 Aug 2000
*/
#ifndef MBEDTLS_ECP_INTERNAL_H
@ -49,22 +63,27 @@
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
/**
* \brief Tell if the cryptographic hardware can handle the group.
* \brief Indicate if the Elliptic Curve Point module extension can
* handle the group.
*
* \param grp The pointer to the group.
* \param grp The pointer to the elliptic curve group that will be the
* basis of the cryptographic computations.
*
* \return Non-zero if successful.
*/
unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
/**
* \brief Initialise the crypto hardware accelerator.
* \brief Initialise the Elliptic Curve Point module extension.
*
* If mbedtls_internal_ecp_grp_capable returns true for a
* group, this function has to be able to initialise the
* hardware for it.
* module for it.
*
* \param grp The pointer to the group the hardware needs to be
* This module can be a driver to a crypto hardware
* accelerator, for which this could be an initialise function.
*
* \param grp The pointer to the group the module needs to be
* initialised for.
*
* \return 0 if successful.
@ -72,10 +91,10 @@ unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
/**
* \brief Reset the crypto hardware accelerator to an uninitialised
* state.
* \brief Frees and deallocates the Elliptic Curve Point module
* extension.
*
* \param grp The pointer to the group the hardware was initialised for.
* \param grp The pointer to the group the module was initialised for.
*/
void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
@ -86,9 +105,6 @@ void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
* \brief Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
*
* This is sort of the reverse operation of
* ecp_normalize_jac().
*
* \param grp Pointer to the group representing the curve.
*
* \param pt The point on the curve to be randomised, given with Jacobian
@ -112,6 +128,9 @@ int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
* The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized.
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Special cases: (1) P or Q is zero, (2) R is zero,
* (3) P == Q.
* None of these cases can happen as intermediate step in
@ -127,7 +146,7 @@ int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
* We accept Q->Z being unset (saving memory in tables) as
* meaning 1.
*
* Cost in field operations if done by GECC 3.22:
* Cost in field operations if done by [5] 3.22:
* 1A := 8M + 3S
*
* \param grp Pointer to the group representing the curve.
@ -153,11 +172,9 @@ int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
* Cost: 1D := 3M + 4S (A == 0)
* 4M + 4S (A == -3)
* 3M + 6S + 1a otherwise
* when the implementation is based on
* http://www.hyperelliptic.org/EFD/g1p/
* auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2
* and standard optimizations are applied when curve parameter
* A is one of { 0, -3 }.
* when the implementation is based on the "dbl-1998-cmo-2"
* doubling formulas in [8] and standard optimizations are
* applied when curve parameter A is one of { 0, -3 }.
*
* \param grp Pointer to the group representing the curve.
*
@ -180,8 +197,10 @@ int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
* Using Montgomery's trick to perform only one inversion mod P
* the cost is:
* 1N(t) := 1I + (6t - 3)M + 1S
* (See for example Cohen's "A Course in Computational
* Algebraic Number Theory", Algorithm 10.3.4.)
* (See for example Algorithm 10.3.4. in [9])
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Warning: fails (returning an error) if one of the points is
* zero!
@ -204,7 +223,7 @@ int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
/**
* \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
*
* Cost in field operations if done by GECC 3.2.1:
* Cost in field operations if done by [5] 3.2.1:
* 1N := 1I + 3M + 1S
*
* \param grp Pointer to the group representing the curve.
@ -232,7 +251,6 @@ int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
/**
* \brief Randomize projective x/z coordinates:
* (X, Z) -> (l X, l Z) for random l
* This is sort of the reverse operation of ecp_normalize_mxz().
*
* \param grp pointer to the group representing the curve
*