mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-12-26 12:35:35 +00:00
mbedtls_ecp_gen_privkey_sw: generalize to mbedtls_mpi_random
Rename mbedtls_ecp_gen_privkey_sw to mbedtls_mpi_random since it has no particular connection to elliptic curves beyond the fact that its operation is defined by the deterministic ECDSA specification. This is a generic function that generates a random MPI between 1 inclusive and N exclusive. Slightly generalize the function to accept a different lower bound, which adds a negligible amount of complexity. Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
parent
6373fab865
commit
7967ec5d25
|
@ -3076,15 +3076,17 @@ cleanup:
|
|||
|
||||
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
|
||||
MBEDTLS_STATIC_TESTABLE
|
||||
int mbedtls_ecp_gen_privkey_sw( const mbedtls_mpi *N, size_t n_bits,
|
||||
mbedtls_mpi *d,
|
||||
int mbedtls_mpi_random( mbedtls_mpi *X,
|
||||
mbedtls_mpi_sint min,
|
||||
const mbedtls_mpi *N,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
/* SEC1 3.2.1: Generate d such that 1 <= n < N */
|
||||
int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
||||
/* SEC1 3.2.1: Generate X such that 1 <= n < N */
|
||||
int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
int count = 0;
|
||||
unsigned cmp = 0;
|
||||
size_t n_bits = mbedtls_mpi_bitlen( N );
|
||||
size_t n_bytes = ( n_bits + 7 ) / 8;
|
||||
|
||||
/*
|
||||
|
@ -3097,8 +3099,8 @@ int mbedtls_ecp_gen_privkey_sw( const mbedtls_mpi *N, size_t n_bits,
|
|||
*/
|
||||
do
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_bytes, f_rng, p_rng ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_bytes - n_bits ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n_bytes, f_rng, p_rng ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
|
||||
|
||||
/*
|
||||
* Each try has at worst a probability 1/2 of failing (the msb has
|
||||
|
@ -3111,17 +3113,17 @@ int mbedtls_ecp_gen_privkey_sw( const mbedtls_mpi *N, size_t n_bits,
|
|||
*/
|
||||
if( ++count > 30 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
ret = mbedtls_mpi_lt_mpi_ct( d, N, &cmp );
|
||||
ret = mbedtls_mpi_lt_mpi_ct( X, N, &cmp );
|
||||
if( ret != 0 )
|
||||
{
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
|
||||
while( mbedtls_mpi_cmp_int( X, min ) < 0 || cmp != 1 );
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
|
@ -3147,8 +3149,7 @@ int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
|
|||
|
||||
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
|
||||
if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
|
||||
return( mbedtls_ecp_gen_privkey_sw( &grp->N, grp->nbits, d,
|
||||
f_rng, p_rng ) );
|
||||
return( mbedtls_mpi_random( d, 1, &grp->N, f_rng, p_rng ) );
|
||||
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
|
||||
|
||||
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
|
||||
|
|
|
@ -77,23 +77,34 @@ int mbedtls_ecp_gen_privkey_mx( size_t n_bits,
|
|||
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
|
||||
|
||||
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
|
||||
/** Generate a private key on a short Weierstrass curve.
|
||||
/** Generate a random number uniformly in a range.
|
||||
*
|
||||
* This function generates a random number between \p min inclusive and
|
||||
* \p N exclusive.
|
||||
*
|
||||
* The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
|
||||
* when the RNG is a suitably parametrized instance of HMAC_DRBG.
|
||||
* when the RNG is a suitably parametrized instance of HMAC_DRBG
|
||||
* and \p min is \c 1.
|
||||
*
|
||||
* \p N The upper bound of the range.
|
||||
* \p n_bits The size of \p N in bits. This value must be correct,
|
||||
* otherwise the result is unpredictable.
|
||||
* \param d A random number, uniformly generated in the range [1, N-1].
|
||||
* \param f_rng The RNG function.
|
||||
* \param p_rng The RNG context to be passed to \p f_rng.
|
||||
* \note There are `N - min` possible outputs. The lower bound
|
||||
* \p min can be reached, but the upper bound \p N cannot.
|
||||
*
|
||||
* \return \c 0 on success.
|
||||
* \return \c MBEDTLS_ERR_ECP_xxx or MBEDTLS_ERR_MPI_xxx on failure.
|
||||
* \param X The destination MPI. This must point to an initialized MPI.
|
||||
* \param min The minimum value to return.
|
||||
* It must be nonnegative.
|
||||
* \param N The upper bound of the range, exclusive.
|
||||
* In other words, this is one plus the maximum value to return.
|
||||
* \p N must be strictly larger than \p min.
|
||||
* \param f_rng The RNG function to use. This must not be \c NULL.
|
||||
* \param p_rng The RNG parameter to be passed to \p f_rng.
|
||||
*
|
||||
* \return \c 0 if successful.
|
||||
* \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if a memory allocation failed.
|
||||
* \return Another negative error code on failure.
|
||||
*/
|
||||
int mbedtls_ecp_gen_privkey_sw( const mbedtls_mpi *N, size_t n_bits,
|
||||
mbedtls_mpi *d,
|
||||
int mbedtls_mpi_random( mbedtls_mpi *X,
|
||||
mbedtls_mpi_sint min,
|
||||
const mbedtls_mpi *N,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng );
|
||||
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
|
||||
|
|
|
@ -312,95 +312,104 @@ genkey_mx_known_answer:447:"ffffffffffffffffffffffffffffffffffffffffffffffffffff
|
|||
ECP generate Montgomery key: Curve448, not enough entropy
|
||||
genkey_mx_known_answer:447:"4f0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f30313233343536":""
|
||||
|
||||
ECP generate in range: 4
|
||||
genkey_sw_many:"04":1000
|
||||
MPI random in range: 1..4
|
||||
mpi_random_many:1:"04":1000
|
||||
|
||||
ECP generate in range: 5
|
||||
genkey_sw_many:"05":1000
|
||||
MPI random in range: 1..5
|
||||
mpi_random_many:1:"05":1000
|
||||
|
||||
ECP generate in range: 6
|
||||
genkey_sw_many:"06":1000
|
||||
MPI random in range: 1..6
|
||||
mpi_random_many:1:"06":1000
|
||||
|
||||
ECP generate in range: 7
|
||||
genkey_sw_many:"07":1000
|
||||
MPI random in range: 1..7
|
||||
mpi_random_many:1:"07":1000
|
||||
|
||||
ECP generate in range: 8
|
||||
genkey_sw_many:"08":1000
|
||||
MPI random in range: 1..8
|
||||
mpi_random_many:1:"08":1000
|
||||
|
||||
ECP generate in range: 9
|
||||
genkey_sw_many:"09":1000
|
||||
MPI random in range: 1..9
|
||||
mpi_random_many:1:"09":1000
|
||||
|
||||
ECP generate in range: 10
|
||||
genkey_sw_many:"0a":1000
|
||||
MPI random in range: 1..10
|
||||
mpi_random_many:1:"0a":1000
|
||||
|
||||
ECP generate in range: 11
|
||||
genkey_sw_many:"0b":1000
|
||||
MPI random in range: 1..11
|
||||
mpi_random_many:1:"0b":1000
|
||||
|
||||
ECP generate in range: 12
|
||||
genkey_sw_many:"0c":1000
|
||||
MPI random in range: 1..12
|
||||
mpi_random_many:1:"0c":1000
|
||||
|
||||
ECP generate in range: 255
|
||||
genkey_sw_many:"ff":100
|
||||
MPI random in range: 1..255
|
||||
mpi_random_many:1:"ff":100
|
||||
|
||||
ECP generate in range: 256
|
||||
genkey_sw_many:"0100":100
|
||||
MPI random in range: 1..256
|
||||
mpi_random_many:1:"0100":100
|
||||
|
||||
ECP generate in range: 257
|
||||
genkey_sw_many:"0101":100
|
||||
MPI random in range: 1..257
|
||||
mpi_random_many:1:"0101":100
|
||||
|
||||
ECP generate in range: 272
|
||||
genkey_sw_many:"0110":100
|
||||
MPI random in range: 1..272
|
||||
mpi_random_many:1:"0110":100
|
||||
|
||||
ECP generate in range: 2^64-1
|
||||
genkey_sw_many:"ffffffffffffffff":100
|
||||
MPI random in range: 1..2^64-1
|
||||
mpi_random_many:1:"ffffffffffffffff":100
|
||||
|
||||
ECP generate in range: 2^64
|
||||
genkey_sw_many:"010000000000000000":100
|
||||
MPI random in range: 1..2^64
|
||||
mpi_random_many:1:"010000000000000000":100
|
||||
|
||||
ECP generate in range: 2^64+1
|
||||
genkey_sw_many:"010000000000000001":100
|
||||
MPI random in range: 1..2^64+1
|
||||
mpi_random_many:1:"010000000000000001":100
|
||||
|
||||
ECP generate in range: 2^64+2^63
|
||||
genkey_sw_many:"018000000000000000":100
|
||||
MPI random in range: 1..2^64+2^63
|
||||
mpi_random_many:1:"018000000000000000":100
|
||||
|
||||
ECP generate in range: 2^65-1
|
||||
genkey_sw_many:"01ffffffffffffffff":100
|
||||
MPI random in range: 1..2^65-1
|
||||
mpi_random_many:1:"01ffffffffffffffff":100
|
||||
|
||||
ECP generate in range: 2^65
|
||||
genkey_sw_many:"020000000000000000":100
|
||||
MPI random in range: 1..2^65
|
||||
mpi_random_many:1:"020000000000000000":100
|
||||
|
||||
ECP generate in range: 2^65+1
|
||||
genkey_sw_many:"020000000000000001":100
|
||||
MPI random in range: 1..2^65+1
|
||||
mpi_random_many:1:"020000000000000001":100
|
||||
|
||||
ECP generate in range: 2^65+2^64
|
||||
genkey_sw_many:"030000000000000000":100
|
||||
MPI random in range: 1..2^65+2^64
|
||||
mpi_random_many:1:"030000000000000000":100
|
||||
|
||||
ECP generate in range: 2^66+2^65
|
||||
genkey_sw_many:"060000000000000000":100
|
||||
MPI random in range: 1..2^66+2^65
|
||||
mpi_random_many:1:"060000000000000000":100
|
||||
|
||||
ECP generate in range: 2^71-1
|
||||
genkey_sw_many:"7fffffffffffffffff":100
|
||||
MPI random in range: 1..2^71-1
|
||||
mpi_random_many:1:"7fffffffffffffffff":100
|
||||
|
||||
ECP generate in range: 2^71
|
||||
genkey_sw_many:"800000000000000000":100
|
||||
MPI random in range: 1..2^71
|
||||
mpi_random_many:1:"800000000000000000":100
|
||||
|
||||
ECP generate in range: 2^71+1
|
||||
genkey_sw_many:"800000000000000001":100
|
||||
MPI random in range: 1..2^71+1
|
||||
mpi_random_many:1:"800000000000000001":100
|
||||
|
||||
ECP generate in range: 2^71+2^63
|
||||
genkey_sw_many:"c00000000000000000":100
|
||||
MPI random in range: 1..2^71+2^63
|
||||
mpi_random_many:1:"c00000000000000000":100
|
||||
|
||||
ECP generate in range: 2^72-1
|
||||
genkey_sw_many:"ffffffffffffffffff":100
|
||||
MPI random in range: 1..2^72-1
|
||||
mpi_random_many:1:"ffffffffffffffffff":100
|
||||
|
||||
ECP generate in range: 2^72
|
||||
genkey_sw_many:"01000000000000000000":100
|
||||
MPI random in range: 1..2^72
|
||||
mpi_random_many:1:"01000000000000000000":100
|
||||
|
||||
ECP generate in range: 2^72+1
|
||||
genkey_sw_many:"01000000000000000001":100
|
||||
MPI random in range: 1..2^72+1
|
||||
mpi_random_many:1:"01000000000000000001":100
|
||||
|
||||
ECP generate in range: 2^72+2^63
|
||||
genkey_sw_many:"01800000000000000000":100
|
||||
MPI random in range: 1..2^72+2^63
|
||||
mpi_random_many:1:"01800000000000000000":100
|
||||
|
||||
MPI random in range: 0..4
|
||||
mpi_random_many:0:"04":1000
|
||||
|
||||
MPI random in range: 2..4
|
||||
mpi_random_many:1:"04":1000
|
||||
|
||||
MPI random in range: 3..4
|
||||
mpi_random_many:1:"04":1000
|
||||
|
||||
ECP read key #1 (short weierstrass, too small)
|
||||
depends_on:MBEDTLS_ECP_DP_SECP192R1_ENABLED
|
||||
|
|
|
@ -1324,7 +1324,7 @@ exit:
|
|||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS:MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
|
||||
void genkey_sw_many( data_t *bound_bytes, int iterations )
|
||||
void mpi_random_many( int min, data_t *bound_bytes, int iterations )
|
||||
{
|
||||
/* Generate numbers in the range 1..bound-1. Do it iterations times.
|
||||
* This function assumes that the value of bound is at least 2 and
|
||||
|
@ -1332,11 +1332,11 @@ void genkey_sw_many( data_t *bound_bytes, int iterations )
|
|||
* effectively never occurs.
|
||||
*/
|
||||
|
||||
mbedtls_mpi bound;
|
||||
mbedtls_mpi upper_bound;
|
||||
size_t n_bits;
|
||||
mbedtls_mpi result;
|
||||
size_t b;
|
||||
/* If bound is small, stats[b] is the number of times the value b
|
||||
/* If upper_bound is small, stats[b] is the number of times the value b
|
||||
* has been generated. Otherwise stats[b] is the number of times a
|
||||
* value with bit b set has been generated. */
|
||||
size_t *stats = NULL;
|
||||
|
@ -1344,12 +1344,12 @@ void genkey_sw_many( data_t *bound_bytes, int iterations )
|
|||
int full_stats;
|
||||
size_t i;
|
||||
|
||||
mbedtls_mpi_init( &bound );
|
||||
mbedtls_mpi_init( &upper_bound );
|
||||
mbedtls_mpi_init( &result );
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &bound,
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
|
||||
bound_bytes->x, bound_bytes->len ) );
|
||||
n_bits = mbedtls_mpi_bitlen( &bound );
|
||||
n_bits = mbedtls_mpi_bitlen( &upper_bound );
|
||||
/* Consider a bound "small" if it's less than 2^5. This value is chosen
|
||||
* to be small enough that the probability of missing one value is
|
||||
* negligible given the number of iterations. It must be less than
|
||||
|
@ -1370,12 +1370,11 @@ void genkey_sw_many( data_t *bound_bytes, int iterations )
|
|||
for( i = 0; i < (size_t) iterations; i++ )
|
||||
{
|
||||
mbedtls_test_set_step( i );
|
||||
TEST_EQUAL( 0, mbedtls_ecp_gen_privkey_sw(
|
||||
&bound, n_bits, &result,
|
||||
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
|
||||
mbedtls_test_rnd_std_rand, NULL ) );
|
||||
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &bound ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, 1 ) >= 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
|
||||
if( full_stats )
|
||||
{
|
||||
uint8_t value;
|
||||
|
@ -1425,7 +1424,7 @@ void genkey_sw_many( data_t *bound_bytes, int iterations )
|
|||
}
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &bound );
|
||||
mbedtls_mpi_free( &upper_bound );
|
||||
mbedtls_mpi_free( &result );
|
||||
mbedtls_free( stats );
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue