Merge branch 'pr_1293' into feature-opaque-keys

This commit is contained in:
Gilles Peskine 2018-02-21 16:36:29 +01:00
commit a814e6e0bd
22 changed files with 1544 additions and 236 deletions

12
.gitignore vendored
View file

@ -23,3 +23,15 @@ massif-*
# CMake generates *.dir/ folders for in-tree builds (used by MSVC projects), ignore all of those:
*.dir/
# Generated documentation
/apidoc
# Common developer files
/GPATH
/GSYMS
/GRTAGS
/GTAGS
/TAGS
/tags
.gdbinit

View file

@ -1,5 +1,13 @@
mbed TLS ChangeLog (Sorted per branch, date)
= mbed TLS 2.7.x feature branch released xxxx-xx-xx
Features
* Add support for opaque keys in the pk module. Applications can define
opaque key engines to perform operations using keys stored in an
external cryptographic module.
* Support opaque private keys in TLS.
= mbed TLS 2.7.0 branch released 2018-02-03
Security

View file

@ -34,6 +34,11 @@
#include "ecp.h"
#include "md.h"
#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
!defined(inline) && !defined(__cplusplus)
#define inline __inline
#endif
/*
* RFC-4492 page 20:
*
@ -51,8 +56,40 @@
#if MBEDTLS_ECP_MAX_BYTES > 124
#error "MBEDTLS_ECP_MAX_BYTES bigger than expected, please fix MBEDTLS_ECDSA_MAX_LEN"
#endif
/**
* \brief Maximum ECDSA signature size for a given curve bit size
*
* \param bits Curve size in bits
* \return Maximum signature size in bytes
*
* \note This macro returns a compile-time constant if its argument
* is one. It may evaluate its argument multiple times; if
* this is a problem, call the function
* mbedtls_ecdsa_max_sig_len instead.
*/
#define MBEDTLS_ECDSA_MAX_SIG_LEN( bits ) \
( /*T,L of SEQUENCE*/ ( ( bits ) >= 61 * 8 ? 3 : 2 ) + \
/*T,L of r,s*/ 2 * ( ( ( bits ) >= 127 * 8 ? 3 : 2 ) + \
/*V of r,s*/ ( ( bits ) + 8 ) / 8 ) )
/**
* \brief Maximum ECDSA signature size for a given curve bit size
*
* \param bits Curve size in bits
* \return Maximum signature size in bytes
*
* \note If you need a compile-time constant, call the macro
* MBEDTLS_ECDSA_MAX_SIG_LEN instead.
*/
static inline size_t mbedtls_ecdsa_max_sig_len( size_t bits )
{
return( MBEDTLS_ECDSA_MAX_SIG_LEN( bits ) );
}
/** The maximal size of an ECDSA signature in Bytes. */
#define MBEDTLS_ECDSA_MAX_LEN ( 3 + 2 * ( 3 + MBEDTLS_ECP_MAX_BYTES ) )
#define MBEDTLS_ECDSA_MAX_LEN \
( MBEDTLS_ECDSA_MAX_SIG_LEN( 8 * MBEDTLS_ECP_MAX_BYTES ) )
/**
* \brief The ECDSA context structure.
@ -65,7 +102,10 @@ extern "C" {
/**
* \brief This function computes the ECDSA signature of a
* previously-hashed message.
* previously-hashed message. The signature is in
* ASN.1 SEQUENCE format, as described in <em>Standards
* for Efficient Cryptography Group (SECG): SEC1 Elliptic
* Curve Cryptography</em>, section C.5.
*
* \note The deterministic version is usually preferred.
*
@ -178,10 +218,13 @@ int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
* \param f_rng The RNG function.
* \param p_rng The RNG parameter.
*
* \note The \p sig buffer must be at least twice as large as the
* size of the curve used, plus 9. For example, 73 Bytes if
* a 256-bit curve is used. A buffer length of
* #MBEDTLS_ECDSA_MAX_LEN is always safe.
* \note The signature \p sig is expected to in be ASN.1 SEQUENCE
* format, as described in <em>Standards for Efficient
* Cryptography Group (SECG): SEC1 Elliptic Curve
* Cryptography</em>, section C.5.
*
* \note A \p sig buffer length of #MBEDTLS_ECDSA_MAX_LEN is
* always safe.
*
* \note If the bitlength of the message hash is larger than the
* bitlength of the group order, then the hash is truncated as
@ -255,6 +298,35 @@ int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
#endif /* MBEDTLS_DEPRECATED_REMOVED */
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
/**
* \brief Convert an ECDSA signature from number pair format to ASN.1
*
* \param r First number of the signature
* \param s Second number of the signature
* \param sig Buffer that will hold the signature
* \param slen Length of the signature written
* \param ssize Size of the sig buffer
*
* \note The size of the buffer \c ssize should be at least
* `MBEDTLS_ECDSA_MAX_SIG_LEN(grp->pbits)` bytes long if the
* signature was produced from curve \c grp, otherwise
* this function may fail with the error
* MBEDTLS_ERR_ASN1_BUF_TOO_SMALL.
* The output ASN.1 SEQUENCE format is as follows:
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
* This format is expected by \c mbedtls_ecdsa_verify.
*
* \return 0 if successful,
* or a MBEDTLS_ERR_MPI_XXX or MBEDTLS_ERR_ASN1_XXX error code
*
*/
int mbedtls_ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen,
size_t ssize );
/**
* \brief This function reads and verifies an ECDSA signature.
*

View file

@ -503,6 +503,59 @@ int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **bu
int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
unsigned char *buf, size_t blen );
#if defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_OID_C)
/**
* \brief Maximum size of the output of mbedtls_ecp_ansi_write_group
*
* \note The maximum size of the OID of a supported group + 2 for
* tag and length. Maximum size 30 is based on the length of
* the OID for primeCurves 10-38 over GF(p) defined by the
* CDC Group, as they seem to have the longest OID out of
* curves in use.
*/
#define MBEDTLS_ECP_GRP_OID_MAX_SIZE ( 30 + 2 )
/**
* \brief Write the ANSI X9.62/RFC5480 OID ECParameters of a group
*
* The output is the group's OID wrapped as ASN.1.
*
* \param grp ECP group used
* \param p Buffer to write to
* \param size Buffer size
* \param olen Number of bytes written to \c buf
* \return 0 on success
* or \c MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
* or \c MBEDTLS_ERR_OID_NOT_FOUND
*/
int mbedtls_ecp_ansi_write_group( const mbedtls_ecp_group *grp,
unsigned char *p, size_t size,
size_t *olen );
/**
* \brief Export a point in ANSI X9.62/RFC5480 ECPoint
*
* The output is the point wrapped as an ASN.1 octet string
* as defined in X9.62 and RFC 5480.
*
* \param ec ECP public key or key pair
* \param format Point format, should be a MBEDTLS_ECP_PF_XXX macro
* \param p Buffer to write to
* \param size Buffer size
* \param olen Number of bytes written to \c buf on success,
* unspecified on failure.
*
* \return 0 on success
* or \c MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
* or \c MBEDTLS_ERR_ECP_BAD_INPUT_DATA
* or \c MBEDTLS_ERR_ASN1_BUF_TOO_SMALL
*/
int mbedtls_ecp_ansi_write_point( const mbedtls_ecp_keypair *ec,
int format,
unsigned char *p,
size_t size, size_t *olen );
#endif /* defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_OID_C) */
/**
* \brief Multiplication by an integer: R = m * P
* (Not thread-safe to use same group in multiple threads)

View file

@ -84,7 +84,7 @@
* X509 2 20
* PKCS5 2 4 (Started from top)
* DHM 3 11
* PK 3 15 (Started from top)
* PK 3 18 (Started from top)
* RSA 4 11
* ECP 4 9 (Started from top)
* MD 5 5

View file

@ -283,6 +283,8 @@
/*
* ECParameters namedCurve identifiers, from RFC 5480, RFC 5639, and SEC2
* When adding new OID's, please update MBEDTLS_ECP_GRP_OID_MAX_SIZE
* in ecp.h
*/
/* secp192r1 OBJECT IDENTIFIER ::= {

View file

@ -1,10 +1,10 @@
/**
* \file pk.h
*
* \brief Public Key abstraction layer
* \brief Public Key cryptography abstraction layer
*/
/*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Copyright (C) 2006-2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
@ -50,11 +50,14 @@
#define inline __inline
#endif
/** \name Error codes */
/**@{*/
#define MBEDTLS_ERR_PK_ALLOC_FAILED -0x3F80 /**< Memory allocation failed. */
#define MBEDTLS_ERR_PK_TYPE_MISMATCH -0x3F00 /**< Type mismatch, eg attempt to encrypt with an ECDSA key */
#define MBEDTLS_ERR_PK_TYPE_MISMATCH -0x3F00 /**< Type mismatch, eg attempt to encrypt with an ECDSA key. */
#define MBEDTLS_ERR_PK_BAD_INPUT_DATA -0x3E80 /**< Bad input parameters to function. */
#define MBEDTLS_ERR_PK_FILE_IO_ERROR -0x3E00 /**< Read/write of file failed. */
#define MBEDTLS_ERR_PK_KEY_INVALID_VERSION -0x3D80 /**< Unsupported key version */
#define MBEDTLS_ERR_PK_KEY_INVALID_VERSION -0x3D80 /**< Unsupported key version. */
#define MBEDTLS_ERR_PK_KEY_INVALID_FORMAT -0x3D00 /**< Invalid key tag or value. */
#define MBEDTLS_ERR_PK_UNKNOWN_PK_ALG -0x3C80 /**< Key algorithm is unsupported (only RSA and EC are supported). */
#define MBEDTLS_ERR_PK_PASSWORD_REQUIRED -0x3C00 /**< Private key password can't be empty. */
@ -65,22 +68,34 @@
#define MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE -0x3980 /**< Unavailable feature, e.g. RSA disabled for RSA key. */
#define MBEDTLS_ERR_PK_SIG_LEN_MISMATCH -0x3900 /**< The signature is valid but its length is less than expected. */
#define MBEDTLS_ERR_PK_HW_ACCEL_FAILED -0x3880 /**< PK hardware accelerator failed. */
#define MBEDTLS_ERR_PK_INVALID_SIGNATURE -0x3800 /**< Invalid signature. */
#define MBEDTLS_ERR_PK_BUFFER_TOO_SMALL -0x3780 /**< Output buffer too small. */
#define MBEDTLS_ERR_PK_NOT_PERMITTED -0x3700 /**< Operation not permitted. */
/**@}*/
#ifdef __cplusplus
extern "C" {
#endif
/** \name Asymmetric cryptography operation contexts */
/**@{*/
/**
* \brief Public key types
*/
* \brief Asymmetric operation context types
*
* \note An opaque key may be an RSA or ECC key or a key of an
* unrecognized type. Call \c mbedtls_pk_can_do() to check
* whether a key is of a recognized type. */
typedef enum {
MBEDTLS_PK_NONE=0,
MBEDTLS_PK_RSA,
MBEDTLS_PK_ECKEY,
MBEDTLS_PK_ECKEY_DH,
MBEDTLS_PK_ECDSA,
MBEDTLS_PK_RSA_ALT,
MBEDTLS_PK_RSASSA_PSS,
MBEDTLS_PK_NONE=0, /**< Unused context object. */
MBEDTLS_PK_RSA, /**< RSA key pair (normal software implementation) with PKCS#1 v1.5 or PSS context. */
MBEDTLS_PK_ECKEY, /**< Generic ECC key pair. */
MBEDTLS_PK_ECKEY_DH, /**< ECC key pair restricted to key exchanges. */
MBEDTLS_PK_ECDSA, /**< ECC key pair restricted to signature/verification. */
MBEDTLS_PK_RSA_ALT, /**< RSA (alternative implementation). */
MBEDTLS_PK_RSASSA_PSS, /**< RSA key pair; same context as MBEDTLS_PK_RSA, but used to represent keys with the algorithm identifier id-RSASSA-PSS. */
MBEDTLS_PK_OPAQUE, /**< Opaque key pair (cryptographic material held in an external module). */
} mbedtls_pk_type_t;
/**
@ -118,29 +133,95 @@ typedef struct
#define MBEDTLS_PK_DEBUG_MAX_ITEMS 3
/**
* \brief Public key information and operations
* \brief Key pair information and operations
*/
typedef struct mbedtls_pk_info_t mbedtls_pk_info_t;
/**
* \brief Public key container
* \brief Context structure for public-key cryptographic operations.
*
* \note This structure contains all the information needed for
* performing a public-key cryptography operation. Depending
* on the operation and the cryptographic algorithm it can
* represent either the public key or a pair of matching
* public and private keys. Also it may contain other
* implementation specific data.
*/
typedef struct
{
const mbedtls_pk_info_t * pk_info; /**< Public key informations */
void * pk_ctx; /**< Underlying public key context */
const mbedtls_pk_info_t * pk_info; /**< Algorithm information */
void * pk_ctx; /**< Underlying key pair context */
} mbedtls_pk_context;
/**
* \brief Get the key type name of a PK context.
*
* \param ctx Context to use
*
* \return Type name on success, or "invalid PK"
*/
const char * mbedtls_pk_get_name( const mbedtls_pk_context *ctx );
/**
* \brief Get the key type of a PK context.
*
* \param ctx Context to use
*
* \return Type on success, or MBEDTLS_PK_NONE
*
* \note This function returns the type of the key pair object. The
* type encodes the representation of the object as well as
* the operations that it can be used for. To test whether
* the object represents a key of a recognized type such
* as RSA or ECDSA, call \c mbedtls_pk_can_do().
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx );
/**
* \brief Get the representation type associated with a given type
*
* \param type Any key type
* \return A canonical representative among the types with the
* same key representation. This is \c MBEDTLS_PK_RSA
* for RSA keys using the built-in software engine and
* MBEDTLS_PK_ECKEY for EC keys using the built-in
* software engine. Note that for keys of type
* \c MBEDTLS_PK_OPAQUE, the type does not specify the
* representation.
*/
static inline mbedtls_pk_type_t mbedtls_pk_representation_type( mbedtls_pk_type_t type )
{
switch( type )
{
case MBEDTLS_PK_RSA:
case MBEDTLS_PK_RSASSA_PSS:
return( MBEDTLS_PK_RSA );
case MBEDTLS_PK_ECKEY:
case MBEDTLS_PK_ECKEY_DH:
case MBEDTLS_PK_ECDSA:
return( MBEDTLS_PK_ECKEY );
default:
return( type );
}
}
#if defined(MBEDTLS_RSA_C)
/**
* Quick access to an RSA context inside a PK context.
*
* \warning You must make sure the PK context actually holds an RSA context
* before using this function!
* \warning You must either make sure the PK context actually holds a
* transparent RSA context by checking
* \c mbedtls_pk_representation_type( mbedtls_pk_get_type( &pk ) ) before using
* this function, or check that the return value is not NULL before using it.
*/
static inline mbedtls_rsa_context *mbedtls_pk_rsa( const mbedtls_pk_context pk )
{
return( (mbedtls_rsa_context *) (pk).pk_ctx );
mbedtls_pk_type_t type =
mbedtls_pk_representation_type( mbedtls_pk_get_type( &pk ) );
if( type == MBEDTLS_PK_RSA )
return( (mbedtls_rsa_context *)( pk.pk_ctx ) );
else
return( NULL );
}
#endif /* MBEDTLS_RSA_C */
@ -148,12 +229,19 @@ static inline mbedtls_rsa_context *mbedtls_pk_rsa( const mbedtls_pk_context pk )
/**
* Quick access to an EC context inside a PK context.
*
* \warning You must make sure the PK context actually holds an EC context
* before using this function!
* \warning You must either make sure the PK context actually holds a
* transparent RSA context by checking
* \c mbedtls_pk_representation_type( mbedtls_pk_get_type( &pk ) ) before using
* this function, or check that the return value is not NULL before using it.
*/
static inline mbedtls_ecp_keypair *mbedtls_pk_ec( const mbedtls_pk_context pk )
{
return( (mbedtls_ecp_keypair *) (pk).pk_ctx );
mbedtls_pk_type_t type =
mbedtls_pk_representation_type( mbedtls_pk_get_type( &pk ) );
if( type == MBEDTLS_PK_ECKEY )
return( (mbedtls_ecp_keypair *)( pk.pk_ctx ) );
else
return( NULL );
}
#endif /* MBEDTLS_ECP_C */
@ -172,10 +260,14 @@ typedef size_t (*mbedtls_pk_rsa_alt_key_len_func)( void *ctx );
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
/**
* \brief Return information associated with the given PK type
* \brief Return default information associated with the given PK type
*
* \param pk_type PK type to search for.
*
* \note This function returns NULL if pk_type indicates an opaque
* key, since the type does not provide enough information to
* build an opaque key.
*
* \return The PK info associated with the type or NULL if not found.
*/
const mbedtls_pk_info_t *mbedtls_pk_info_from_type( mbedtls_pk_type_t pk_type );
@ -201,7 +293,17 @@ void mbedtls_pk_free( mbedtls_pk_context *ctx );
* MBEDTLS_ERR_PK_BAD_INPUT_DATA on invalid input,
* MBEDTLS_ERR_PK_ALLOC_FAILED on allocation failure.
*
* \note For contexts holding an RSA-alt key, use
* \note Engines that implement opaque keys may offer an
* alternative setup function that take engine-dependent
* parameters. If the documentation of the engine lists such a
* function, call it instead of mbedtls_pk_setup. A standard
* way of providing such function is by first calling the
* generic mbedtls_pk_setup function (in particular taking
* care of context allocation through ctx_alloc) and
* afterwards proceeding to initialize the
* implementation-specific context structure.
*
* \note For contexts holding an RSA-alt key pair, use
* \c mbedtls_pk_setup_rsa_alt() instead.
*/
int mbedtls_pk_setup( mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info );
@ -211,7 +313,7 @@ int mbedtls_pk_setup( mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info );
* \brief Initialize an RSA-alt context
*
* \param ctx Context to initialize. Must be empty (type NONE).
* \param key RSA key pointer
* \param key RSA key pair pointer
* \param decrypt_func Decryption function
* \param sign_func Signing function
* \param key_len_func Function returning key length in bytes
@ -240,6 +342,11 @@ size_t mbedtls_pk_get_bitlen( const mbedtls_pk_context *ctx );
* \brief Get the length in bytes of the underlying key
* \param ctx Context to use
*
* \note This returns the minimum number of bytes required to
* store the part of the key that defines its size (modulus
* for RSA, coordinate for ECC). The way the key is stored
* in the context may have a different size.
*
* \return Key length in bytes, or 0 on error
*/
static inline size_t mbedtls_pk_get_len( const mbedtls_pk_context *ctx )
@ -248,13 +355,24 @@ static inline size_t mbedtls_pk_get_len( const mbedtls_pk_context *ctx )
}
/**
* \brief Tell if a context can do the operation given by type
* \brief Tell if a context can do the operations given by type
*
* \note This function can be used to identify the type of key
* (e.g. RSA vs ECC), and a superset of permitted
* operations. It is possible that this function returns
* true but some operations are not allowed. For example
* this function always returns true if ctx is an RSA
* context and type is MBEDTLS_PK_RSA, but the key may
* be restricted to any subset of operations among signature,
* verification, encryption and decryption. To determine
* which operations a key allow, attempt the operation and
* check the return status.
*
* \param ctx Context to test
* \param type Target type
*
* \return 0 if context can't do the operations,
* 1 otherwise.
* \return 1 if context can do the operations,
* 0 otherwise.
*/
int mbedtls_pk_can_do( const mbedtls_pk_context *ctx, mbedtls_pk_type_t type );
@ -271,7 +389,7 @@ int mbedtls_pk_can_do( const mbedtls_pk_context *ctx, mbedtls_pk_type_t type );
* \return 0 on success (signature is valid),
* MBEDTLS_ERR_PK_SIG_LEN_MISMATCH if the signature is
* valid but its actual length is less than sig_len,
* or a specific error code.
* or a type-specific error code.
*
* \note For RSA keys, the default padding type is PKCS#1 v1.5.
* Use \c mbedtls_pk_verify_ext( MBEDTLS_PK_RSASSA_PSS, ... )
@ -304,7 +422,7 @@ int mbedtls_pk_verify( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
* used for this type of signatures,
* MBEDTLS_ERR_PK_SIG_LEN_MISMATCH if the signature is
* valid but its actual length is less than sig_len,
* or a specific error code.
* or a type-specific error code.
*
* \note If hash_len is 0, then the length associated with md_alg
* is used instead, or an error returned if it is invalid.
@ -328,11 +446,18 @@ int mbedtls_pk_verify_ext( mbedtls_pk_type_t type, const void *options,
* \param hash Hash of the message to sign
* \param hash_len Hash length or 0 (see notes)
* \param sig Place to write the signature
* \param sig_len Number of bytes written
* \param sig_len Actual length in bytes of the created signature
* \param f_rng RNG function
* \param p_rng RNG parameter
*
* \return 0 on success, or a specific error code.
* \return 0 on success, or a type-specific error code.
*
* \note The signature buffer \c sig must be of appropriate size
* which can be calculated with
* \c mbedtls_pk_get_signature_size.
* Depending on the algorithm, the value returned in
* \c sig_len may be less or equal to the value returned by
* \c mbedtls_pk_get_signature_size.
*
* \note For RSA keys, the default padding type is PKCS#1 v1.5.
* There is no interface in the PK module to make RSASSA-PSS
@ -349,6 +474,16 @@ int mbedtls_pk_sign( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
/**
* \brief Provide an upper bound for the size of a signature made
* with this key.
*
* \param ctx PK context to use
*
* \return Maximum size in bytes of a signature made with this key.
*/
size_t mbedtls_pk_get_signature_size( const mbedtls_pk_context *ctx );
/**
* \brief Decrypt message (including padding if relevant).
*
@ -363,7 +498,7 @@ int mbedtls_pk_sign( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
*
* \note For RSA keys, the default padding type is PKCS#1 v1.5.
*
* \return 0 on success, or a specific error code.
* \return 0 on success, or a type-specific error code.
*/
int mbedtls_pk_decrypt( mbedtls_pk_context *ctx,
const unsigned char *input, size_t ilen,
@ -384,7 +519,7 @@ int mbedtls_pk_decrypt( mbedtls_pk_context *ctx,
*
* \note For RSA keys, the default padding type is PKCS#1 v1.5.
*
* \return 0 on success, or a specific error code.
* \return 0 on success, or a type-specific error code.
*/
int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
const unsigned char *input, size_t ilen,
@ -397,7 +532,19 @@ int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
* \param pub Context holding a public key.
* \param prv Context holding a private (and public) key.
*
* \return 0 on success or MBEDTLS_ERR_PK_BAD_INPUT_DATA
* \return * 0 on success.
* * MBEDTLS_ERR_PK_BAD_INPUT_DATA if one of the contexts
* is ill-formed.
* * MBEDTLS_ERR_PK_TYPE_MISMATCH if the contexts cannot
* represent keys of the same type.
* * MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE if it is impossible
* to determine whether the keys match. This can only happen
* if \c prv is an opaque key.
* * Or a type-specific error code.
*
* \note Opaque key types may omit implementing this function
* by providing a NULL pointer in the mbedtls_pk_info_t structure.
* Currently, an opaque \c pub never matches a transparent \c prv.
*/
int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv );
@ -407,27 +554,16 @@ int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_conte
* \param ctx Context to use
* \param items Place to write debug items
*
* \return 0 on success or MBEDTLS_ERR_PK_BAD_INPUT_DATA
* \return * 0 on success.
* * MBEDTLS_ERR_PK_BAD_INPUT_DATA if the context is ill-formed.
* * MBEDTLS_ERR_PK_TYPE_MISMATCH if the context does not
* support exporting debug information.
* * Or a type-specific error code.
*/
int mbedtls_pk_debug( const mbedtls_pk_context *ctx, mbedtls_pk_debug_item *items );
/**
* \brief Access the type name
*
* \param ctx Context to use
*
* \return Type name on success, or "invalid PK"
*/
const char * mbedtls_pk_get_name( const mbedtls_pk_context *ctx );
/**@}*/
/**
* \brief Get the key type
*
* \param ctx Context to use
*
* \return Type on success, or MBEDTLS_PK_NONE
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx );
#if defined(MBEDTLS_PK_PARSE_C)
/** \ingroup pk_module */
@ -513,7 +649,12 @@ int mbedtls_pk_parse_public_keyfile( mbedtls_pk_context *ctx, const char *path )
#endif /* MBEDTLS_FS_IO */
#endif /* MBEDTLS_PK_PARSE_C */
#if defined(MBEDTLS_PK_WRITE_C)
/** \name Key pair serialization */
/**@{*/
/**
* \brief Write a private key to a PKCS#1 or SEC1 DER structure
* Note: data is written at the end of the buffer! Use the
@ -567,11 +708,13 @@ int mbedtls_pk_write_pubkey_pem( mbedtls_pk_context *ctx, unsigned char *buf, si
*/
int mbedtls_pk_write_key_pem( mbedtls_pk_context *ctx, unsigned char *buf, size_t size );
#endif /* MBEDTLS_PEM_WRITE_C */
/**@}*/
#endif /* MBEDTLS_PK_WRITE_C */
/*
* WARNING: Low-level functions. You probably do not want to use these unless
* you are certain you do ;)
/** \name Low-level functions */
/**@{*/
/**
* \warning You probably do not want to use these unless you are certain you do ;)
*/
#if defined(MBEDTLS_PK_PARSE_C)
@ -611,6 +754,8 @@ int mbedtls_pk_write_pubkey( unsigned char **p, unsigned char *start,
int mbedtls_pk_load_file( const char *path, unsigned char **buf, size_t *n );
#endif
/**@}*/
#ifdef __cplusplus
}
#endif

338
include/mbedtls/pk_info.h Normal file
View file

@ -0,0 +1,338 @@
/**
* \file pk_info.h
*
* \brief Public Key cryptography abstraction layer: engine interface
*
* This file defines the interface which public-key cryptography engines
* (PK engines) must implement. A PK engine defines how a public-private
* key pair is represented and how to perform cryptographic operations
* with it. Mbed TLS contains built-in PK engines implemented either
* purely in software or with hardware acceleration support, depending
* on the target platform. In addition, it is possible to define custom
* opaque key engines that forward operation requests to cryptographic
* modules outside Mbed TLS, such as external cryptoprocessors or general
* PKCS#11 tokens.
*/
/*
* Copyright (C) 2006-2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_PK_INFO_H
#define MBEDTLS_PK_INFO_H
#if !defined(MBEDTLS_CONFIG_FILE)
#include "config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include "pk.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Methods that opaque key pair objects must implement.
*
* Engines that interface with external cryptographic processors must
* implement this interface. It allows using different engines for each key.
* Platform-specific hardware accelerators that can be used for all keys of
* a given type should not use this interface, but rather provide an
* alternative implementation of the respective cryptographic module - for
* example to use an RSA accelerator you can define MBEDTLS_RSA_ALT, and
* provide your own implementation of the RSA module.
*
* \warning: If you are using the PK interface to perform operations on
* keys, call the functions in pk.h. The interface in this file should only
* be used by implementers of opaque key engines.
*
* An engine for asymmetric cryptography must implement the interface
* described in this structure. The interface for the engine may be
* exposed in one of two ways:
*
* - Declare the mbedtls_pk_info_t structure and instruct users to call
* mbedtls_pk_setup with that structure.
* - Keep the mbedtls_pk_info_t structure hidden and declare a function
* to call instead of mbedtls_pk_setup. This function should have an
* interface of the form
* 'int mbedtls_pk_setup_myengine(mbedtls_pk_context *, ...)'
* where the extra parameters depend on the engine, e.g. handles to keys
* stored in an external cryptographic module.
*
* Unless otherwise indicated, functions returning int must return an
* Mbed TLS status code, either 0 for success or a negative value to indicate
* an error. It is recommended to use the MBEDTLS_ERR_PK_XXX error codes
* defined in pk.h.
*
* Some methods are optional; this is clearly indicated in their description.
* If a method is optional, then an opaque key implementation may put NULL
* in the corresponding field. The corresponding function in pk.h will
* return #MBEDTLS_ERR_PK_TYPE_MISMATCH in this case.
*
*
* \warning: Do not declare this structure directly! It may be extended in
* future versions of Mbed TLS. Call the macro
* MBEDTLS_PK_OPAQUE_INFO_1() instead.
* This macro is guaranteed to take parameters with the same type
* and semantics as previous versions and fill any new field of the
* structure with sensible values.
*/
struct mbedtls_pk_info_t
{
/** Key pair type.
*
* mbedtls_pk_get_type() returns this value.
*
* For transparent keys, this contains an indication of supported
* algorithms. For opaque keys, this is #MBEDTLS_PK_OPAQUE. */
mbedtls_pk_type_t type;
/** Type name.
*
* mbedtls_pk_get_name() returns this value. It must be a
* null-terminated string.
*
* For transparent keys, this reflects the key type. For opaque keys,
* this reflects the cryptographic module driver. */
const char *name;
/** Get key size in bits.
*
* mbedtls_pk_get_bitlen() returns this value.
*
* This function cannot fail. */
size_t (*get_bitlen)( const void *ctx );
/** Tell if the context implements the algorithm specified by
* the provided type (e.g. ECKEY can do ECDSA).
*
* mbedtls_pk_can_do() calls this function.
*
* This function is only based on the key type. It does not take any
* usage restrictions into account. */
int (*can_do)( const void * ctx, mbedtls_pk_type_t type );
/** Upper bound of the signature length
*
* mbedtls_pk_get_signature_size() returns this value.
*
* In case of an error, or an unsupported key type, 0 should be returned.
*
* Opaque implementations may omit this method if they do not support
* signing. */
size_t (*signature_size_func)( const void *ctx );
/** Verify signature
*
* mbedtls_pk_verify() calls this function.
*
* Opaque implementations may omit this method if they do not support
* signature verification. */
int (*verify_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len );
/** Make signature
*
* mbedtls_pk_sign() calls this function.
*
* Assumes that the buffer \c sig has room for
* \c signature_size_func(ctx) bytes.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* signing. If this method is provided, so must be
* \ref mbedtls_pk_info_t.signature_size_func. */
int (*sign_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Decrypt message
*
* mbedtls_pk_decrypt() calls this function.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* decryption. */
int (*decrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Encrypt message
*
* mbedtls_pk_decrypt() calls this function.
*
* The arguments \c f_rng and \c p_rng are provided in case the
* algorithm requires randomization. Implementations are not
* required to use it if they have their own random source. If \c
* f_rng is null, the implementation should operate if it can, and
* return #MBEDTLS_ERR_PK_BAD_INPUT_DATA otherwise.
*
* Opaque implementations may omit this method if they do not support
* encryption. */
int (*encrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Check public-private key pair
*
* mbedtls_pk_check_pair() calls this function on the private key pair
* object \c prv. The other argument \c pub may be of any type, but it
* is guaranteed to be initialized. The implementation is allowed to do
* a probabilistic and computationally expensive check.
*
* If \c prv is an RSA key and \c pub is a transparent RSA key
* (i.e. \c pub has the type #MBEDTLS_PK_RSA or #MBEDTLS_PK_RSASSA_PSS),
* then \c check_pair_func must return 0 if the public key is
* mathematically equivalent to the public part of \c prv, and
* #MBEDTLS_ERR_RSA_KEY_CHECK_FAILED otherwise.
*
* If \c pub is an ECC key and \c pub is a transparent ECC key that can
* be used for ECDSA (i.e. \c pub has the type #MBEDTLS_PK_ECKEY or
* #MBEDTLS_PK_ECDSA), then \c check_pair_func must return 0 if the public
* key is mathematically equivalent to the public part of \c prv, and
* #MBEDTLS_ERR_ECP_BAD_INPUT_DATA otherwise.
*
* If \c pub is a transparent key (key of type #MBEDTLS_PK_RSA,
* #MBEDTLS_PK_RSASSA_PSS, #MBEDTLS_PK_ECKEY or #MBEDTLS_PK_ECDSA) whose
* type does not match the semantic type of \c prv (RSA, ECC or other),
* then \c check_pair_func must return #MBEDTLS_ERR_PK_TYPE_MISMATCH.
*
* If \c pub and \c prv are opaque keys from the same engines (i.e. their
* pk_info fields are equal), then \c check_pair_func must return 0,
* #MBEDTLS_ERR_PK_TYPE_MISMATCH, or #MBEDTLS_ERR_RSA_KEY_CHECK_FAILED
* or #MBEDTLS_ERR_ECP_BAD_INPUT_DATA as in the case of transparent keys.
*
* If \c pub is an opaque key which is not from the same engine as \c prv,
* then \c check_pair_func may either return a semantically correct status
* as in the case of transparent keys, or it may return
* #MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE.
*
* Alternatively, \c check_pair_func may return another PK, RSA or ECP
* error code if applicable. */
int (*check_pair_func)( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv );
/** Allocate a new context
*
* mbedtls_pk_setup() calls this function.
*
* If this function returns NULL, the allocation is considered to
* have failed and the object remains uninitialized.
*
* Opaque implementations may omit this method. In this case,
* mbedtls_pk_setup() will set the \c pk_ctx field of the
* mbedtls_pk_context object to NULL, and it is up to an engine-specific
* setup function to initialize the \c pk_ctx field. This is useful if
* the size of the memory depends on extra parameters passed to the
* engine-specific setup function. */
void * (*ctx_alloc_func)( void );
/** Free the given context
*
* mbedtls_pk_free() calls this function. It must free the data allocated
* by \c ctx_alloc_func as well as any other resource that belongs to
* the object. */
void (*ctx_free_func)( void *ctx );
/** Interface with the debug module
*
* mbedtls_pk_debug() calls this function.
*
* Opaque implementations may omit this method. */
void (*debug_func)( const void *ctx, mbedtls_pk_debug_item *items );
};
/**
* \brief Initializer for opaque key engines
*
* Methods that opaque key pair objects must implement.
*
* The value of this macro is a suitable initializer for an object of type
* mbedtls_pk_info_t. It is guaranteed to remain so in future versions of the
* library, even if the type mbedtls_pk_info_t changes.
*
* This macro is suitable for static initializers provided that all of its
* parameters are constant.
*
* \param name For transparent keys, this reflects the key type. For opaque
* keys, this reflects the cryptographic module driver.
* \param get_bitlen \ref mbedtls_pk_info_t.get_bitlen method
* \param can_do \ref mbedtls_pk_info_t.can_do method
* \param signature_size_func \ref mbedtls_pk_info_t.signature_size_func method
* \param verify_func \ref mbedtls_pk_info_t.verify_func method
* \param sign_func \ref mbedtls_pk_info_t.sign_func method
* \param decrypt_func \ref mbedtls_pk_info_t.decrypt_func method
* \param encrypt_func \ref mbedtls_pk_info_t.encrypt_func method
* \param check_pair_func \ref mbedtls_pk_info_t.check_pair_func method
* \param ctx_alloc_func \ref mbedtls_pk_info_t.ctx_alloc_func method
* \param ctx_free_func \ref mbedtls_pk_info_t.ctx_free_func method
* \param debug_func \ref mbedtls_pk_info_t.debug_func method
*
* \return Initializer for an object of type mbedtls_pk_info_t with the
* specified field values */
#define MBEDTLS_PK_OPAQUE_INFO_1( \
name \
, get_bitlen \
, can_do \
, signature_size_func \
, verify_func \
, sign_func \
, decrypt_func \
, encrypt_func \
, check_pair_func \
, ctx_alloc_func \
, ctx_free_func \
, debug_func \
) \
{ \
MBEDTLS_PK_OPAQUE \
, name \
, get_bitlen \
, can_do \
, signature_size_func \
, verify_func \
, sign_func \
, decrypt_func \
, encrypt_func \
, check_pair_func \
, ctx_alloc_func \
, ctx_free_func \
, debug_func \
}
#ifdef __cplusplus
}
#endif
#endif /* MBEDTLS_PK_INFO_H */

View file

@ -1,10 +1,17 @@
/**
* \file pk_internal.h
*
* \brief Public Key abstraction layer: wrapper functions
* \brief Public Key cryptography abstraction layer: internal definitions
*
* This file contains built-in types for handling natively supported key types
* using the interface defined in pk_info.h.
*
* \warning This file contains internal definitions for the library.
* The interfaces in this file may change in future versions of the
* library without notice.
*/
/*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Copyright (C) 2006-2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
@ -22,8 +29,8 @@
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_PK_WRAP_H
#define MBEDTLS_PK_WRAP_H
#ifndef MBEDTLS_PK_INTERNAL_H
#define MBEDTLS_PK_INTERNAL_H
#if !defined(MBEDTLS_CONFIG_FILE)
#include "config.h"
@ -33,57 +40,6 @@
#include "pk.h"
struct mbedtls_pk_info_t
{
/** Public key type */
mbedtls_pk_type_t type;
/** Type name */
const char *name;
/** Get key size in bits */
size_t (*get_bitlen)( const void * );
/** Tell if the context implements this type (e.g. ECKEY can do ECDSA) */
int (*can_do)( mbedtls_pk_type_t type );
/** Verify signature */
int (*verify_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len );
/** Make signature */
int (*sign_func)( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Decrypt message */
int (*decrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Encrypt message */
int (*encrypt_func)( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
/** Check public-private key pair */
int (*check_pair_func)( const void *pub, const void *prv );
/** Allocate a new context */
void * (*ctx_alloc_func)( void );
/** Free the given context */
void (*ctx_free_func)( void *ctx );
/** Interface with the debug module */
void (*debug_func)( const void *ctx, mbedtls_pk_debug_item *items );
};
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
/* Container for RSA-alt */
typedef struct
@ -112,4 +68,4 @@ extern const mbedtls_pk_info_t mbedtls_ecdsa_info;
extern const mbedtls_pk_info_t mbedtls_rsa_alt_info;
#endif
#endif /* MBEDTLS_PK_WRAP_H */
#endif /* MBEDTLS_PK_INTERNAL_H */

View file

@ -287,31 +287,48 @@ cleanup:
#endif /* MBEDTLS_ECDSA_VERIFY_ALT */
/*
* Convert a signature (given by context) to ASN.1
* Convert a signature (given by context) to ASN.1.
* This function is for internal use only. Upon an error, it may leave
* the signature buffer partially written.
*/
static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen )
static int internal_ecdsa_signature_to_asn1( const mbedtls_mpi *r,
const mbedtls_mpi *s, unsigned char *sig,
size_t *slen, size_t ssize )
{
int ret;
unsigned char buf[MBEDTLS_ECDSA_MAX_LEN];
unsigned char *p = buf + sizeof( buf );
unsigned char *p = sig + ssize;
size_t len = 0;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, sig, s ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, sig, r ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, sig, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, sig,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
memcpy( sig, p, len );
memmove( sig, p, len );
memset( sig + len, 0, ssize - len );
*slen = len;
return( 0 );
}
/*
* Compute and write signature
* Convert a signature from number pair format to ASN.1.
* Zeroize the buffer on error.
*/
int mbedtls_ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen, size_t ssize )
{
int ret = internal_ecdsa_signature_to_asn1( r, s, sig, slen, ssize );
if( ret != 0 )
memset( sig, 0, ssize );
return( ret );
}
/*
* Compute and write signature. This function assumes that sig is large enough.
* Refer to MBEDTLS_ECDSA_MAX_SIG_LEN for the signature size.
*/
int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hlen,
@ -321,6 +338,7 @@ int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t
{
int ret;
mbedtls_mpi r, s;
const size_t ssize = MBEDTLS_ECDSA_MAX_SIG_LEN( ctx->grp.pbits );
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &s );
@ -338,7 +356,7 @@ int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t
hash, hlen, f_rng, p_rng ) );
#endif
MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) );
MBEDTLS_MPI_CHK( mbedtls_ecdsa_signature_to_asn1( &r, &s, sig, slen, ssize ) );
cleanup:
mbedtls_mpi_free( &r );

View file

@ -51,6 +51,11 @@
#include "mbedtls/ecp.h"
#include "mbedtls/threading.h"
#if defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_OID_C)
#include "mbedtls/asn1write.h"
#include "mbedtls/oid.h"
#endif
#include <string.h>
#if !defined(MBEDTLS_ECP_ALT)
@ -2059,6 +2064,62 @@ cleanup:
return( ret );
}
#if defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_OID_C)
int mbedtls_ecp_ansi_write_group( const mbedtls_ecp_group *grp,
unsigned char *p,
size_t size, size_t *olen )
{
const char *oid;
unsigned char *q;
size_t oid_length;
int ret;
*olen = 0;
ret = mbedtls_oid_get_oid_by_ec_grp( grp->id, &oid, &oid_length );
if( ret != 0 )
return( ret );
// Output is a TLV with len(T)=1, len(L)=1, V=OID
if( size < 2 + oid_length )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
q = p + 2 + oid_length;
MBEDTLS_ASN1_CHK_ADD( *olen, mbedtls_asn1_write_oid( &q, p, oid,
oid_length ) );
if ( p != q )
return ( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
return ( 0 );
}
int mbedtls_ecp_ansi_write_point( const mbedtls_ecp_keypair *ec,
int format,
unsigned char *p,
size_t size, size_t *olen )
{
unsigned char *q;
size_t tl_max_size = 3; /* room for the OCTET_STRING tag and length */
int ret;
if( size < tl_max_size )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
q = p + tl_max_size;
ret = mbedtls_ecp_point_write_binary( &ec->grp, &ec->Q,
format,
olen, q, size - tl_max_size );
if( ret < 0 )
return( ret );
ret = mbedtls_asn1_write_len( &q, p, *olen );
if( ret < 0 )
return( ret );
ret = mbedtls_asn1_write_tag( &q, p, MBEDTLS_ASN1_OCTET_STRING );
if( ret < 0 )
return( ret );
*olen += tl_max_size - ( q - p );
if( q != p )
memmove( p, q, *olen );
return( 0 );
}
#endif /* defined(MBEDTLS_ASN1_WRITE_C) && defined(MBEDTLS_OID_C) */
#if defined(MBEDTLS_SELF_TEST)
/*

View file

@ -336,6 +336,12 @@ void mbedtls_strerror( int ret, char *buf, size_t buflen )
mbedtls_snprintf( buf, buflen, "PK - The signature is valid but its length is less than expected" );
if( use_ret == -(MBEDTLS_ERR_PK_HW_ACCEL_FAILED) )
mbedtls_snprintf( buf, buflen, "PK - PK hardware accelerator failed" );
if( use_ret == -(MBEDTLS_ERR_PK_INVALID_SIGNATURE) )
mbedtls_snprintf( buf, buflen, "PK - Invalid signature" );
if( use_ret == -(MBEDTLS_ERR_PK_BUFFER_TOO_SMALL) )
mbedtls_snprintf( buf, buflen, "PK - Output buffer too small" );
if( use_ret == -(MBEDTLS_ERR_PK_NOT_PERMITTED) )
mbedtls_snprintf( buf, buflen, "PK - Operation not permitted" );
#endif /* MBEDTLS_PK_C */
#if defined(MBEDTLS_PKCS12_C)

View file

@ -28,6 +28,7 @@
#if defined(MBEDTLS_PK_C)
#include "mbedtls/pk.h"
#include "mbedtls/pk_internal.h"
#include "mbedtls/pk_info.h"
#if defined(MBEDTLS_RSA_C)
#include "mbedtls/rsa.h"
@ -93,6 +94,7 @@ const mbedtls_pk_info_t * mbedtls_pk_info_from_type( mbedtls_pk_type_t pk_type )
return( &mbedtls_ecdsa_info );
#endif
/* MBEDTLS_PK_RSA_ALT omitted on purpose */
/* MBEDTLS_PK_OPAQUE omitted on purpose: they can't be built by parsing */
default:
return( NULL );
}
@ -106,8 +108,11 @@ int mbedtls_pk_setup( mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info )
if( ctx == NULL || info == NULL || ctx->pk_info != NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( info->ctx_alloc_func != NULL )
{
if( ( ctx->pk_ctx = info->ctx_alloc_func( ) ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
}
ctx->pk_info = info;
@ -154,7 +159,7 @@ int mbedtls_pk_can_do( const mbedtls_pk_context *ctx, mbedtls_pk_type_t type )
if( ctx == NULL || ctx->pk_info == NULL )
return( 0 );
return( ctx->pk_info->can_do( type ) );
return( ctx->pk_info->can_do( ctx->pk_ctx, type ) );
}
/*
@ -311,24 +316,27 @@ int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv )
{
if( pub == NULL || pub->pk_info == NULL ||
prv == NULL || prv->pk_info == NULL ||
prv->pk_info->check_pair_func == NULL )
prv == NULL || prv->pk_info == NULL )
{
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
}
if( prv->pk_info->type == MBEDTLS_PK_RSA_ALT )
if( pub->pk_info == prv->pk_info && pub->pk_ctx == prv->pk_ctx )
return( 0 );
if( prv->pk_info->check_pair_func == NULL )
{
if( pub->pk_info->type != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE );
}
else
if( prv->pk_info->type != MBEDTLS_PK_OPAQUE &&
prv->pk_info->type != MBEDTLS_PK_RSA_ALT )
{
if( pub->pk_info != prv->pk_info )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
return( prv->pk_info->check_pair_func( pub->pk_ctx, prv->pk_ctx ) );
return( prv->pk_info->check_pair_func( pub, prv ) );
}
/*
@ -342,6 +350,20 @@ size_t mbedtls_pk_get_bitlen( const mbedtls_pk_context *ctx )
return( ctx->pk_info->get_bitlen( ctx->pk_ctx ) );
}
/*
* Maximum signature size
*/
size_t mbedtls_pk_get_signature_size( const mbedtls_pk_context *ctx )
{
if( ctx == NULL || ctx->pk_info == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( ctx->pk_info->signature_size_func == NULL )
return( 0 );
return( ctx->pk_info->signature_size_func( ctx->pk_ctx ) );
}
/*
* Export debug information
*/
@ -369,7 +391,9 @@ const char *mbedtls_pk_get_name( const mbedtls_pk_context *ctx )
}
/*
* Access the PK type
* Access the PK type.
* For an opaque key pair object, this does not give any information on the
* underlying cryptographic material.
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx )
{

View file

@ -26,6 +26,7 @@
#endif
#if defined(MBEDTLS_PK_C)
#include "mbedtls/pk_info.h"
#include "mbedtls/pk_internal.h"
/* Even if RSA not activated, for the sake of RSA-alt */
@ -60,8 +61,9 @@ static void mbedtls_zeroize( void *v, size_t n ) {
#endif
#if defined(MBEDTLS_RSA_C)
static int rsa_can_do( mbedtls_pk_type_t type )
static int rsa_can_do( const void *ctx, mbedtls_pk_type_t type )
{
(void) ctx;
return( type == MBEDTLS_PK_RSA ||
type == MBEDTLS_PK_RSASSA_PSS );
}
@ -117,6 +119,12 @@ static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
md_alg, (unsigned int) hash_len, hash, sig ) );
}
static size_t rsa_signature_size( const void *ctx_arg )
{
const mbedtls_rsa_context *ctx = ctx_arg;
return( ctx->len );
}
static int rsa_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
@ -146,10 +154,10 @@ static int rsa_encrypt_wrap( void *ctx,
ilen, input, output ) );
}
static int rsa_check_pair_wrap( const void *pub, const void *prv )
static int rsa_check_pair_wrap( const mbedtls_pk_context *pub,
const mbedtls_pk_context *prv )
{
return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub,
(const mbedtls_rsa_context *) prv ) );
return( mbedtls_rsa_check_pub_priv( pub->pk_ctx, prv->pk_ctx ) );
}
static void *rsa_alloc_wrap( void )
@ -186,6 +194,7 @@ const mbedtls_pk_info_t mbedtls_rsa_info = {
"RSA",
rsa_get_bitlen,
rsa_can_do,
rsa_signature_size,
rsa_verify_wrap,
rsa_sign_wrap,
rsa_decrypt_wrap,
@ -201,8 +210,9 @@ const mbedtls_pk_info_t mbedtls_rsa_info = {
/*
* Generic EC key
*/
static int eckey_can_do( mbedtls_pk_type_t type )
static int eckey_can_do( const void *ctx, mbedtls_pk_type_t type )
{
(void) ctx;
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH ||
type == MBEDTLS_PK_ECDSA );
@ -260,12 +270,18 @@ static int eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
return( ret );
}
static size_t ecdsa_signature_size( const void *ctx_arg )
{
const mbedtls_ecp_keypair *ctx = ctx_arg;
return( MBEDTLS_ECDSA_MAX_SIG_LEN( ctx->grp.pbits ) );
}
#endif /* MBEDTLS_ECDSA_C */
static int eckey_check_pair( const void *pub, const void *prv )
static int eckey_check_pair( const mbedtls_pk_context *pub,
const mbedtls_pk_context *prv )
{
return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub,
(const mbedtls_ecp_keypair *) prv ) );
return( mbedtls_ecp_check_pub_priv( pub->pk_ctx, prv->pk_ctx ) );
}
static void *eckey_alloc_wrap( void )
@ -297,11 +313,13 @@ const mbedtls_pk_info_t mbedtls_eckey_info = {
eckey_get_bitlen,
eckey_can_do,
#if defined(MBEDTLS_ECDSA_C)
ecdsa_signature_size,
eckey_verify_wrap,
eckey_sign_wrap,
#else
NULL,
NULL,
NULL,
#endif
NULL,
NULL,
@ -314,8 +332,9 @@ const mbedtls_pk_info_t mbedtls_eckey_info = {
/*
* EC key restricted to ECDH
*/
static int eckeydh_can_do( mbedtls_pk_type_t type )
static int eckeydh_can_do( const void *ctx, mbedtls_pk_type_t type )
{
(void) ctx;
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH );
}
@ -329,6 +348,7 @@ const mbedtls_pk_info_t mbedtls_eckeydh_info = {
NULL,
NULL,
NULL,
NULL,
eckey_check_pair,
eckey_alloc_wrap, /* Same underlying key structure */
eckey_free_wrap, /* Same underlying key structure */
@ -337,8 +357,9 @@ const mbedtls_pk_info_t mbedtls_eckeydh_info = {
#endif /* MBEDTLS_ECP_C */
#if defined(MBEDTLS_ECDSA_C)
static int ecdsa_can_do( mbedtls_pk_type_t type )
static int ecdsa_can_do( const void *ctx, mbedtls_pk_type_t type )
{
(void) ctx;
return( type == MBEDTLS_PK_ECDSA );
}
@ -388,6 +409,7 @@ const mbedtls_pk_info_t mbedtls_ecdsa_info = {
"ECDSA",
eckey_get_bitlen, /* Compatible key structures */
ecdsa_can_do,
ecdsa_signature_size,
ecdsa_verify_wrap,
ecdsa_sign_wrap,
NULL,
@ -404,8 +426,9 @@ const mbedtls_pk_info_t mbedtls_ecdsa_info = {
* Support for alternative RSA-private implementations
*/
static int rsa_alt_can_do( mbedtls_pk_type_t type )
static int rsa_alt_can_do( const void *ctx, mbedtls_pk_type_t type )
{
(void) ctx;
return( type == MBEDTLS_PK_RSA );
}
@ -434,6 +457,13 @@ static int rsa_alt_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
md_alg, (unsigned int) hash_len, hash, sig ) );
}
static size_t rsa_alt_signature_size( const void *ctx )
{
const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx;
return( rsa_alt->key_len_func( rsa_alt->key ) );
}
static int rsa_alt_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
@ -452,26 +482,30 @@ static int rsa_alt_decrypt_wrap( void *ctx,
}
#if defined(MBEDTLS_RSA_C)
static int rsa_alt_check_pair( const void *pub, const void *prv )
static int rsa_alt_check_pair( const mbedtls_pk_context *pub,
const mbedtls_pk_context *prv )
{
unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
unsigned char hash[32];
size_t sig_len = 0;
int ret;
if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) )
if( pub->pk_info->type != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
if( rsa_alt_get_bitlen( prv->pk_ctx ) != rsa_get_bitlen( pub->pk_ctx ) )
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
memset( hash, 0x2a, sizeof( hash ) );
if( ( ret = rsa_alt_sign_wrap( (void *) prv, MBEDTLS_MD_NONE,
if( ( ret = rsa_alt_sign_wrap( (void *) prv->pk_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ),
sig, &sig_len, NULL, NULL ) ) != 0 )
{
return( ret );
}
if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE,
if( rsa_verify_wrap( pub->pk_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) != 0 )
{
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
@ -502,6 +536,7 @@ const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
"RSA-alt",
rsa_alt_get_bitlen,
rsa_alt_can_do,
rsa_alt_signature_size,
NULL,
rsa_alt_sign_wrap,
rsa_alt_decrypt_wrap,

View file

@ -739,7 +739,7 @@ static int ssl_pick_cert( mbedtls_ssl_context *ssl,
#if defined(MBEDTLS_ECDSA_C)
if( pk_alg == MBEDTLS_PK_ECDSA &&
ssl_check_key_curve( cur->key, ssl->handshake->curves ) != 0 )
ssl_check_key_curve( &cur->cert->pk, ssl->handshake->curves ) != 0 )
{
MBEDTLS_SSL_DEBUG_MSG( 3, ( "certificate mismatch: elliptic curve" ) );
continue;

View file

@ -111,12 +111,7 @@ my @test_cases_lines = split/^/, <TEST_CASES>;
my $test_cases;
my $index = 2;
for my $line (@test_cases_lines) {
if ($line =~ /^\/\* BEGIN_SUITE_HELPERS .*\*\//)
{
$line = $line."#line $index \"$test_case_file\"\n";
}
if ($line =~ /^\/\* BEGIN_CASE .*\*\//)
if ($line =~ /^\/\* BEGIN_.*\*\//)
{
$line = $line."#line $index \"$test_case_file\"\n";
}

View file

@ -142,7 +142,7 @@ void ecdsa_write_read_random( int id )
rnd_pseudo_info rnd_info;
unsigned char hash[32];
unsigned char sig[200];
size_t sig_len, i;
size_t sig_len, max_sig_len, i;
mbedtls_ecdsa_init( &ctx );
memset( &rnd_info, 0x00, sizeof( rnd_pseudo_info ) );
@ -162,8 +162,10 @@ void ecdsa_write_read_random( int id )
TEST_ASSERT( mbedtls_ecdsa_read_signature( &ctx, hash, sizeof( hash ),
sig, sig_len ) == 0 );
/* check we didn't write past the announced length */
for( i = sig_len; i < sizeof( sig ); i++ )
/* check we didn't write past the maximum length */
max_sig_len = MBEDTLS_ECDSA_MAX_SIG_LEN( ctx.grp.pbits );
TEST_ASSERT( sig_len <= max_sig_len );
for( i = max_sig_len; i < sizeof( sig ); i++ )
TEST_ASSERT( sig[i] == 0x2a );
/* try verification with invalid length */

View file

@ -30,6 +30,26 @@ ECP curve info #8
depends_on:MBEDTLS_ECP_DP_SECP192R1_ENABLED
mbedtls_ecp_curve_info:MBEDTLS_ECP_DP_SECP192R1:19:192:"secp192r1"
ECP write ECParameters OID secp192r1
depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_ECP_DP_SECP192R1_ENABLED
ecp_ansi_write_group:MBEDTLS_ECP_DP_SECP192R1:"06082a8648ce3d030101"
ECP write ECParameters OID secp521r1
depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_ECP_DP_SECP521R1_ENABLED
ecp_ansi_write_group:MBEDTLS_ECP_DP_SECP521R1:"06052b81040023"
ECP write ECParameters OID brainpoolP512r1
depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_ECP_DP_BP512R1_ENABLED
ecp_ansi_write_group:MBEDTLS_ECP_DP_BP512R1:"06092b240303020801010d"
ECP write ECPoint octet string (uncompressed)
depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_PK_PARSE_C:MBEDTLS_ECP_DP_SECP192R1_ENABLED
ecp_ansi_write_point:"data_files/ec_pub.der":MBEDTLS_ECP_PF_UNCOMPRESSED:"043104bc797db3ae7f08ec3d496b4fb411b3f620a558a501e0222d08cfe0dc8aec8b1a7bf24be92951cc5ba1bebb2474909ae0"
ECP write ECPoint octet string (compressed)
depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_PK_PARSE_C:MBEDTLS_ECP_DP_SECP192R1_ENABLED
ecp_ansi_write_point:"data_files/ec_pub.der":MBEDTLS_ECP_PF_COMPRESSED:"041902bc797db3ae7f08ec3d496b4fb411b3f620a558a501e0222d"
ECP check pubkey Montgomery #1 (too big)
depends_on:MBEDTLS_ECP_DP_CURVE25519_ENABLED
ecp_check_pub:MBEDTLS_ECP_DP_CURVE25519:"010000000000000000000000000000000000000000000000000000000000000000":"0":"1":MBEDTLS_ERR_ECP_INVALID_KEY

View file

@ -1,5 +1,6 @@
/* BEGIN_HEADER */
#include "mbedtls/ecp.h"
#include "mbedtls/pk.h"
#define ECP_PF_UNKNOWN -1
/* END_HEADER */
@ -412,6 +413,70 @@ exit:
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C */
void ecp_ansi_write_group( int id, char *hex )
{
mbedtls_ecp_group grp;
unsigned char good[MBEDTLS_ECP_GRP_OID_MAX_SIZE];
unsigned char tested[MBEDTLS_ECP_GRP_OID_MAX_SIZE];
size_t good_len = unhexify( good, hex );
size_t received_len = 0;
int ret = 0;
mbedtls_ecp_group_init( &grp );
TEST_ASSERT( mbedtls_ecp_group_load( &grp, id ) == 0 );
/* Positive test */
ret = mbedtls_ecp_ansi_write_group( &grp, tested, sizeof( tested ),
&received_len );
TEST_ASSERT( ret == 0 && good_len == (unsigned) received_len );
TEST_ASSERT( memcmp( good, tested, good_len ) == 0 );
/* Buffer too small */
TEST_ASSERT( mbedtls_ecp_ansi_write_group( &grp, tested, good_len - 1,
&received_len ) ==
MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
exit:
mbedtls_ecp_group_free( &grp );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ASN1_WRITE_C:MBEDTLS_OID_C:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */
void ecp_ansi_write_point( char *key_file, int format, char *good_hex )
{
unsigned char good_buf[1000];
unsigned char tested_buf[1000];
size_t good_len = unhexify( good_buf, good_hex );
size_t received_len = 0;
mbedtls_pk_context pk;
int ret = -1;
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_parse_public_keyfile( &pk, key_file ) == 0 );
/* Positive test */
ret = mbedtls_ecp_ansi_write_point( mbedtls_pk_ec( pk ), format,
tested_buf, sizeof( tested_buf ),
&received_len );
TEST_ASSERT( ret == 0 && good_len == (unsigned) received_len );
TEST_ASSERT( memcmp( good_buf, tested_buf, good_len ) == 0 );
/* Buffer too small */
TEST_ASSERT( mbedtls_ecp_ansi_write_point( mbedtls_pk_ec( pk ), format,
tested_buf, good_len - 1,
&received_len ) ==
MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
exit:
if( ret >= 0 )
{
unsigned char out[999] = {0};
hexify( out, tested_buf, ret );
printf( "== %s ==\n", out );
}
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_ecp_check_privkey( int id, char *key_hex, int ret )
{

View file

@ -153,3 +153,20 @@ mbedtls_pk_check_pair:"data_files/ec_256_pub.pem":"data_files/server1.key":MBEDT
RSA hash_len overflow (size_t vs unsigned int)
depends_on:MBEDTLS_RSA_C:MBEDTLS_HAVE_INT64
pk_rsa_overflow:
PK opaque mock
depends_on:MBEDTLS_RSA_C:MBEDTLS_ECDSA_C
pk_opaque_mock:
PK opaque with failed allocation
depends_on:MBEDTLS_RSA_C
pk_opaque_fail_allocation:
PK opaque minimal
depends_on:MBEDTLS_RSA_C
pk_opaque_minimal:
#PK opaque wrapper (RSA)
#depends_on:MBEDTLS_RSA_C
#pk_opaque_wrapper:
#

View file

@ -1,5 +1,8 @@
/* BEGIN_HEADER */
#include <string.h>
#include "mbedtls/pk.h"
#include "mbedtls/pk_info.h"
/* For error codes */
#include "mbedtls/ecp.h"
@ -39,14 +42,15 @@ static int pk_genkey( mbedtls_pk_context *pk )
}
#if defined(MBEDTLS_RSA_C)
int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen,
static int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen,
const unsigned char *input, unsigned char *output,
size_t output_max_len )
{
return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx, NULL, NULL, mode, olen,
input, output, output_max_len ) );
}
int mbedtls_rsa_sign_func( void *ctx,
static int mbedtls_rsa_sign_func( void *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, mbedtls_md_type_t md_alg, unsigned int hashlen,
const unsigned char *hash, unsigned char *sig )
@ -54,11 +58,270 @@ int mbedtls_rsa_sign_func( void *ctx,
return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx, f_rng, p_rng, mode,
md_alg, hashlen, hash, sig ) );
}
size_t mbedtls_rsa_key_len_func( void *ctx )
static size_t mbedtls_rsa_key_len_func( void *ctx )
{
return( ((const mbedtls_rsa_context *) ctx)->len );
}
/* Prepare a raw RSA context with a small random key. */
static void pk_rsa_prepare( mbedtls_rsa_context *raw )
{
mbedtls_rsa_init( raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
#if defined(MBEDTLS_GENPRIME)
mbedtls_rsa_gen_key( raw, rnd_std_rand, NULL, RSA_KEY_SIZE, 3 );
#endif
}
/* Test the RSA context tested_ctx by comparing its operation with a
generic RSA context which is initialized with the key in raw. */
static void pk_rsa_match( mbedtls_rsa_context *raw,
mbedtls_pk_context *tested_ctx,
int sign_ret, int verify_ret,
int encrypt_ret, int decrypt_ret,
int debug_ret )
{
mbedtls_pk_context basic_ctx;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[1000];
unsigned char msg[50], ciph[1000], test[1000];
size_t sig_len, ciph_len, test_len;
memset( hash, 0x2a, sizeof( hash ) );
memset( sig, 0, sizeof( sig ) );
memset( msg, 0x2a, sizeof( msg ) );
memset( ciph, 0, sizeof( ciph ) );
memset( test, 0, sizeof( test ) );
/* Initialize basic PK RSA context with raw key */
mbedtls_pk_init( &basic_ctx );
TEST_ASSERT( mbedtls_pk_setup( &basic_ctx,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_rsa_copy( mbedtls_pk_rsa( basic_ctx ), raw ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( tested_ctx, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( tested_ctx ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( tested_ctx ) == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_get_signature_size( tested_ctx ) == RSA_KEY_LEN );
/* Test signature */
TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ),
sig, &sig_len, rnd_std_rand, NULL ) == sign_ret );
if( sign_ret == 0 )
{
#if defined(MBEDTLS_HAVE_INT64)
TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, (size_t)-1,
NULL, NULL, rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_HAVE_INT64 */
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &basic_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) == 0 );
}
/* Test verification */
TEST_ASSERT( mbedtls_pk_sign( &basic_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ),
sig, &sig_len, rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) == verify_ret );
if( verify_ret == 0 )
{
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len - 1 ) == MBEDTLS_ERR_RSA_VERIFY_FAILED );
sig[sig_len-1] ^= 1;
TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) == MBEDTLS_ERR_RSA_INVALID_PADDING );
}
/* Test encryption */
TEST_ASSERT( mbedtls_pk_encrypt( tested_ctx, msg, sizeof( msg ),
ciph, &ciph_len, sizeof( ciph ),
rnd_std_rand, NULL ) == encrypt_ret );
if( encrypt_ret == 0 )
{
TEST_ASSERT( mbedtls_pk_decrypt( &basic_ctx, ciph, ciph_len,
test, &test_len, sizeof( test ),
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof( msg ) );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
}
/* Test decryption */
TEST_ASSERT( mbedtls_pk_encrypt( &basic_ctx, msg, sizeof( msg ),
ciph, &ciph_len, sizeof( ciph ),
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( tested_ctx, ciph, ciph_len,
test, &test_len, sizeof( test ),
rnd_std_rand, NULL ) == decrypt_ret );
if( decrypt_ret == 0 )
{
TEST_ASSERT( test_len == sizeof( msg ) );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
}
/* Test debug */
TEST_ASSERT( mbedtls_pk_debug( tested_ctx, dbg_items ) == debug_ret );
exit:
mbedtls_pk_free( &basic_ctx );
}
#define OPAQUE_MOCK_CAN_DO MBEDTLS_PK_RSA
#define OPAQUE_MOCK_BITLEN 'b'
#define OPAQUE_MOCK_MD_ALG MBEDTLS_MD_SHA256
#define OPAQUE_MOCK_SIGNATURE_SIZE 4
#define OPAQUE_MOCK_GOOD_SIGNATURE "good"
static const unsigned char opaque_mock_hash[8] = "HASHhash";
static const unsigned char opaque_mock_reference_input[10] = "INPUTinput";
static const unsigned char opaque_mock_reference_encrypted[12] = "C:JOQVUjoqvu";
static const unsigned char opaque_mock_reference_decrypted[12] = "P:HMOTShmots";
static char opaque_mock_fake_ctx = 'c';
static mbedtls_pk_debug_item opaque_mock_pk_debug_item;
static int opaque_mock_debug_called_correctly = 0;
static int opaque_mock_free_called_correctly = 0;
static size_t opaque_mock_get_bitlen( const void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( OPAQUE_MOCK_BITLEN );
exit:
return( INT_MIN );
}
static int opaque_mock_can_do( const void *ctx,
mbedtls_pk_type_t type )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( type == OPAQUE_MOCK_CAN_DO );
exit:
return( INT_MIN );
}
static int opaque_mock_verify_func( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG );
TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) );
TEST_ASSERT( hash == opaque_mock_hash );
if( sig_len != OPAQUE_MOCK_SIGNATURE_SIZE )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
if( memcmp( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE ) )
return( MBEDTLS_ERR_PK_INVALID_SIGNATURE );
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_sign_func( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG );
TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) );
TEST_ASSERT( hash == opaque_mock_hash );
memcpy( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE );
*sig_len = OPAQUE_MOCK_SIGNATURE_SIZE;
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_decrypt_func( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) );
TEST_ASSERT( !memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) );
if( osize < sizeof( opaque_mock_reference_decrypted ) )
return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL );
*olen = sizeof( opaque_mock_reference_decrypted );
memcpy( output, opaque_mock_reference_decrypted, sizeof( opaque_mock_reference_decrypted ) );
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_encrypt_func( void *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) );
TEST_ASSERT( !memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) );
if( osize < sizeof( opaque_mock_reference_encrypted ) )
return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL );
*olen = sizeof( opaque_mock_reference_encrypted );
memcpy( output, opaque_mock_reference_encrypted, sizeof( opaque_mock_reference_encrypted ) );
(void) f_rng;
(void) p_rng;
return( 0 );
exit:
return( INT_MIN );
}
static int opaque_mock_check_pair_func( const mbedtls_pk_context *pub,
const mbedtls_pk_context *prv )
{
TEST_ASSERT( prv->pk_ctx == &opaque_mock_fake_ctx );
if( mbedtls_pk_get_type( pub ) != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( 0 );
exit:
return( INT_MIN );
}
static void *opaque_mock_ctx_alloc_func( void )
{
return( &opaque_mock_fake_ctx );
}
static void *opaque_mock_ctx_alloc_fail( void )
{
return( NULL );
}
static void opaque_mock_ctx_free_func( void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
opaque_mock_free_called_correctly = 1;
exit:
return;
}
static void opaque_mock_debug_func( const void *ctx,
mbedtls_pk_debug_item *items )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
TEST_ASSERT( items == &opaque_mock_pk_debug_item );
opaque_mock_debug_called_correctly = 1;
exit:
return;
}
static size_t opaque_mock_signature_size_func( const void *ctx )
{
TEST_ASSERT( ctx == &opaque_mock_fake_ctx );
return( OPAQUE_MOCK_SIGNATURE_SIZE );
exit:
return( -1 );
}
#endif /* MBEDTLS_RSA_C */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
@ -262,17 +525,19 @@ void pk_sign_verify( int type, int sign_ret, int verify_ret )
mbedtls_pk_init( &pk );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( hash, 0x2a, sizeof( hash ) );
memset( sig, 0, sizeof( sig ) );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk ) == 0 );
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash,
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, sizeof( hash ),
sig, &sig_len, rnd_std_rand, NULL ) == sign_ret );
if( sign_ret == 0 )
TEST_ASSERT( sig_len <= mbedtls_pk_get_signature_size( &pk ) );
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) == verify_ret );
hash, sizeof( hash ), sig, sig_len ) == verify_ret );
exit:
mbedtls_pk_free( &pk );
@ -449,74 +714,287 @@ void pk_rsa_alt( )
* Test it against the public operations (encrypt, verify) of a
* corresponding rsa context.
*/
mbedtls_pk_context alt;
mbedtls_rsa_context raw;
mbedtls_pk_context rsa, alt;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[1000];
unsigned char msg[50], ciph[1000], test[1000];
size_t sig_len, ciph_len, test_len;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
mbedtls_rsa_init( &raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
mbedtls_pk_init( &rsa ); mbedtls_pk_init( &alt );
/* Generate an RSA key to use in both contexts */
pk_rsa_prepare( &raw );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( msg, 0x2a, sizeof msg );
memset( ciph, 0, sizeof ciph );
memset( test, 0, sizeof test );
/* Initiliaze PK RSA context with random key */
TEST_ASSERT( mbedtls_pk_setup( &rsa,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( pk_genkey( &rsa ) == 0 );
/* Extract key to the raw rsa context */
TEST_ASSERT( mbedtls_rsa_copy( &raw, mbedtls_pk_rsa( rsa ) ) == 0 );
/* Initialize PK RSA_ALT context */
/* Set up the alt context with the generated key */
mbedtls_pk_init( &alt );
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw,
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 );
mbedtls_rsa_decrypt_func,
mbedtls_rsa_sign_func,
mbedtls_rsa_key_len_func ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( &alt, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &alt ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( &alt ) == RSA_KEY_LEN );
/* Check the metadata in the alt context */
TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 );
/* Test signature */
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == 0 );
#if defined(MBEDTLS_HAVE_INT64)
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, (size_t)-1,
NULL, NULL, rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_HAVE_INT64 */
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &rsa, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == 0 );
/* Test decrypt */
TEST_ASSERT( mbedtls_pk_encrypt( &rsa, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( &alt, ciph, ciph_len,
test, &test_len, sizeof test,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
/* Test forbidden operations */
TEST_ASSERT( mbedtls_pk_encrypt( &alt, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == ret );
TEST_ASSERT( mbedtls_pk_verify( &alt, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == ret );
TEST_ASSERT( mbedtls_pk_debug( &alt, dbg_items ) == ret );
/* Exercise the alt context */
pk_rsa_match( &raw, &alt,
0, MBEDTLS_ERR_PK_TYPE_MISMATCH,
MBEDTLS_ERR_PK_TYPE_MISMATCH, 0,
MBEDTLS_ERR_PK_TYPE_MISMATCH );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &rsa ); mbedtls_pk_free( &alt );
mbedtls_pk_free( &alt );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_ECDSA_C */
void pk_opaque_mock( )
{
mbedtls_pk_info_t info =
MBEDTLS_PK_OPAQUE_INFO_1(
"mock"
, opaque_mock_get_bitlen
, opaque_mock_can_do
, opaque_mock_signature_size_func
, opaque_mock_verify_func
, opaque_mock_sign_func
, opaque_mock_decrypt_func
, opaque_mock_encrypt_func
, opaque_mock_check_pair_func
, opaque_mock_ctx_alloc_func
, opaque_mock_ctx_free_func
, opaque_mock_debug_func
);
mbedtls_pk_context ctx;
unsigned char sig[OPAQUE_MOCK_SIGNATURE_SIZE] = OPAQUE_MOCK_GOOD_SIGNATURE;
unsigned char input[sizeof( opaque_mock_reference_input )];
unsigned char output[sizeof( opaque_mock_reference_decrypted )] = "garbage";
size_t len;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 );
TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name );
TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 );
TEST_ASSERT( mbedtls_pk_get_signature_size( &ctx ) == OPAQUE_MOCK_SIGNATURE_SIZE );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE - 1 ) ==
MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
sig[0] ^= 1;
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, OPAQUE_MOCK_SIGNATURE_SIZE ) ==
MBEDTLS_ERR_PK_INVALID_SIGNATURE );
len = -42;
TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG,
opaque_mock_hash, sizeof( opaque_mock_hash ),
sig, &len, NULL, NULL ) == 0 );
TEST_ASSERT( len == OPAQUE_MOCK_SIGNATURE_SIZE );
memcpy( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) );
len = -42;
TEST_ASSERT( mbedtls_pk_encrypt( &ctx, input, sizeof( input ),
output, &len,
sizeof( opaque_mock_reference_encrypted ),
NULL, NULL ) == 0);
TEST_ASSERT( memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) == 0 );
TEST_ASSERT( len == sizeof( opaque_mock_reference_encrypted ) );
TEST_ASSERT( memcmp( output, opaque_mock_reference_encrypted,
sizeof( opaque_mock_reference_encrypted ) ) == 0 );
len = -42;
TEST_ASSERT( mbedtls_pk_decrypt( &ctx, input, sizeof( input ),
output, &len,
sizeof( opaque_mock_reference_decrypted ),
NULL, NULL ) == 0);
TEST_ASSERT( memcmp( input, opaque_mock_reference_input,
sizeof( opaque_mock_reference_input ) ) == 0 );
TEST_ASSERT( len == sizeof( opaque_mock_reference_decrypted ) );
TEST_ASSERT( memcmp( output, opaque_mock_reference_decrypted,
sizeof( opaque_mock_reference_decrypted ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 );
{
mbedtls_pk_context pub;
mbedtls_pk_init( &pub );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == 0 );
mbedtls_pk_free( &pub );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECDSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
mbedtls_pk_free( &pub );
}
opaque_mock_debug_called_correctly = 0;
TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) == 0 );
TEST_ASSERT( opaque_mock_debug_called_correctly );
opaque_mock_free_called_correctly = 0;
mbedtls_pk_free( &ctx );
TEST_ASSERT( opaque_mock_free_called_correctly );
return;
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_opaque_minimal( )
{
mbedtls_pk_info_t info =
MBEDTLS_PK_OPAQUE_INFO_1(
"mock"
, opaque_mock_get_bitlen
, opaque_mock_can_do
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, opaque_mock_ctx_free_func
, NULL
);
mbedtls_pk_context ctx;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 );
ctx.pk_ctx = &opaque_mock_fake_ctx;
TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name );
TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 );
TEST_ASSERT( mbedtls_pk_get_signature_size( &ctx ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG,
NULL, 0, NULL, 0 ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG, NULL, 0,
NULL, NULL, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_encrypt( &ctx, NULL, 0,
NULL, NULL, 0, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH);
TEST_ASSERT( mbedtls_pk_decrypt( &ctx, NULL, 0,
NULL, NULL, 0, NULL, NULL ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH);
TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 );
{
mbedtls_pk_context pub;
mbedtls_pk_init( &pub );
TEST_ASSERT( mbedtls_pk_setup( &pub,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) ==
MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE );
mbedtls_pk_free( &pub );
}
TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) ==
MBEDTLS_ERR_PK_TYPE_MISMATCH );
opaque_mock_free_called_correctly = 0;
mbedtls_pk_free( &ctx );
TEST_ASSERT( opaque_mock_free_called_correctly );
return;
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_opaque_fail_allocation( )
{
mbedtls_pk_info_t info =
MBEDTLS_PK_OPAQUE_INFO_1(
"mock"
, opaque_mock_get_bitlen
, opaque_mock_can_do
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, opaque_mock_ctx_alloc_fail
, NULL
, NULL
);
mbedtls_pk_context ctx;
mbedtls_pk_init( &ctx );
TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) ==
MBEDTLS_ERR_PK_ALLOC_FAILED );
TEST_ASSERT( ctx.pk_info == NULL );
TEST_ASSERT( ctx.pk_ctx == NULL );
exit:
mbedtls_pk_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */
void pk_opaque_wrapper( )
{
/* Test an opaque context that's a wrapper around the usual RSA
implementation against an independent raw RSA context. */
mbedtls_pk_context opaque;
mbedtls_rsa_context raw;
const mbedtls_pk_info_t *mbedtls_rsa_info =
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA );
mbedtls_pk_info_t pk_rsa_opaque_info =
MBEDTLS_PK_OPAQUE_INFO_1(
"RSA-opaque-wrapper"
, mbedtls_rsa_info->get_bitlen
, mbedtls_rsa_info->can_do
, mbedtls_rsa_info->signature_size_func
, mbedtls_rsa_info->verify_func
, mbedtls_rsa_info->sign_func
, mbedtls_rsa_info->decrypt_func
, mbedtls_rsa_info->encrypt_func
, NULL // we don't test check_pair here
, mbedtls_rsa_info->ctx_alloc_func
, mbedtls_rsa_info->ctx_free_func
, mbedtls_rsa_info->debug_func
);
/* Generate an RSA key to use in both contexts */
pk_rsa_prepare( &raw );
/* Set up the opaque context with the generated key */
mbedtls_pk_init( &opaque );
TEST_ASSERT( mbedtls_pk_setup( &opaque, &pk_rsa_opaque_info ) == 0 );
mbedtls_rsa_copy( opaque.pk_ctx, &raw );
/* Check the metadata in the opaque context */
TEST_ASSERT( mbedtls_pk_get_type( &opaque ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &opaque ),
"RSA-opaque-wrapper" ) == 0 );
/* Exercise the opaque context */
pk_rsa_match( &raw, &opaque, 0, 0, 0, 0, 0 );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &opaque );
}
/* END_CASE */

View file

@ -191,6 +191,7 @@
<ClInclude Include="..\..\include\mbedtls\padlock.h" />
<ClInclude Include="..\..\include\mbedtls\pem.h" />
<ClInclude Include="..\..\include\mbedtls\pk.h" />
<ClInclude Include="..\..\include\mbedtls\pk_info.h" />
<ClInclude Include="..\..\include\mbedtls\pk_internal.h" />
<ClInclude Include="..\..\include\mbedtls\pkcs11.h" />
<ClInclude Include="..\..\include\mbedtls\pkcs12.h" />