Change method for making M odd in ecp_mul()

- faster
- avoids M >= N (if m = N-1 or N-2)
This commit is contained in:
Manuel Pégourié-Gonnard 2013-11-21 19:19:54 +01:00
parent 36daa13d76
commit aade42fd88

View file

@ -1072,6 +1072,14 @@ cleanup:
* The coordinates of Q must be normalized (= affine), * The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized. * but those of P don't need to. R is not normalized.
* *
* Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
* None of these cases can happen as intermediate step in ecp_mul():
* - at each step, P, Q and R are multiples of the base point, the factor
* being less than its order, so none of them is zero;
* - Q is an odd multiple of the base point, P an even multiple,
* due to the choice of precomputed points in the modified comb method.
* So branches for these cases do not leak secret information.
*
* Cost: 1A := 8M + 3S * Cost: 1A := 8M + 3S
*/ */
static int ecp_add_mixed( const ecp_group *grp, ecp_point *R, static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
@ -1085,8 +1093,7 @@ static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
#endif #endif
/* /*
* Trivial cases: P == 0 or Q == 0 * Trivial cases: P == 0 or Q == 0 (case 1)
* This will never happen during ecp_mul() so we don't mind the branches.
*/ */
if( mpi_cmp_int( &P->Z, 0 ) == 0 ) if( mpi_cmp_int( &P->Z, 0 ) == 0 )
return( ecp_copy( R, Q ) ); return( ecp_copy( R, Q ) );
@ -1110,7 +1117,7 @@ static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 ); MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 ); MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
/* TODO: make sure it never happens during ecp_mul() */ /* Special cases (2) and (3) */
if( mpi_cmp_int( &T1, 0 ) == 0 ) if( mpi_cmp_int( &T1, 0 ) == 0 )
{ {
if( mpi_cmp_int( &T2, 0 ) == 0 ) if( mpi_cmp_int( &T2, 0 ) == 0 )
@ -1443,14 +1450,17 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
unsigned char w, m_is_odd, p_eq_g; unsigned char w, m_is_odd, p_eq_g;
size_t pre_len, d, i; size_t pre_len, d, i;
unsigned char k[COMB_MAX_D + 1]; unsigned char k[COMB_MAX_D + 1];
ecp_point Q, *T = NULL, S[2]; ecp_point *T;
mpi M; mpi M, mm;
/* /*
* Sanity checks (before we even initialize anything) * Sanity checks (before we even initialize anything)
*/ */
if( mpi_cmp_int( &P->Z, 1 ) != 0 ) if( mpi_cmp_int( &P->Z, 1 ) != 0 ||
mpi_get_bit( &grp->N, 0 ) != 1 )
{
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
}
if( ( ret = ecp_check_privkey( grp, m ) ) != 0 ) if( ( ret = ecp_check_privkey( grp, m ) ) != 0 )
return( ret ); return( ret );
@ -1463,9 +1473,7 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
return( ret ); return( ret );
mpi_init( &M ); mpi_init( &M );
ecp_point_init( &Q ); mpi_init( &mm );
ecp_point_init( &S[0] );
ecp_point_init( &S[1] );
/* /*
* Minimize the number of multiplications, that is minimize * Minimize the number of multiplications, that is minimize
@ -1498,8 +1506,7 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
* Prepare precomputed points: if P == G we want to * Prepare precomputed points: if P == G we want to
* use grp->T if already initialized, or initialize it. * use grp->T if already initialized, or initialize it.
*/ */
if( p_eq_g ) T = p_eq_g ? grp->T : NULL;
T = grp->T;
if( T == NULL ) if( T == NULL )
{ {
@ -1523,26 +1530,25 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
} }
/* /*
* Make sure M is odd (M = m + 1 or M = m + 2) * Make sure M is odd (M = m or M = N - m, since N is odd)
* later we'll get m * P by subtracting P or 2 * P to M * P. * using the fact that m * P = - (N - m) * P
*/ */
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 ); m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
MPI_CHK( mpi_copy( &M, m ) ); MPI_CHK( mpi_copy( &M, m ) );
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) ); MPI_CHK( mpi_sub_mpi( &mm, &grp->N, m ) );
MPI_CHK( mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
/* /*
* Go for comb multiplication, Q = M * P * Go for comb multiplication, R = M * P
*/ */
ecp_comb_fixed( k, d, w, &M ); ecp_comb_fixed( k, d, w, &M );
ecp_mul_comb_core( grp, &Q, T, k, d, f_rng, p_rng ); ecp_mul_comb_core( grp, R, T, k, d, f_rng, p_rng );
/* /*
* Now get m * P from M * P * Now get m * P from M * P and normalize it
*/ */
MPI_CHK( ecp_copy( &S[0], P ) ); MPI_CHK( ecp_safe_invert( grp, R, ! m_is_odd ) );
MPI_CHK( ecp_add( grp, &S[1], P, P ) ); MPI_CHK( ecp_normalize( grp, R ) );
MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
cleanup: cleanup:
@ -1553,10 +1559,11 @@ cleanup:
polarssl_free( T ); polarssl_free( T );
} }
ecp_point_free( &S[1] );
ecp_point_free( &S[0] );
ecp_point_free( &Q );
mpi_free( &M ); mpi_free( &M );
mpi_free( &mm );
if( ret != 0 )
ecp_point_free( R );
return( ret ); return( ret );
} }