Bignum: Improve primality test for FIPS primes

The FIPS 186-4 RSA key generation prescribes lower failure probability
in primality testing and this makes key generation slower. We enable the
caller to decide between compliance/security and performance.

This python script calculates the base two logarithm of the formulas in
HAC Fact 4.48 and was used to determine the breakpoints and number of
rounds:

def mrpkt_log_2(k, t):
    if t <= k/9.0:
        return 3*math.log(k,2)/2+t-math.log(t,2)/2+4-2*math.sqrt(t*k)
    elif t <= k/4.0:
        c1 = math.log(7.0*k/20,2)-5*t
        c2 = math.log(1/7.0,2)+15*math.log(k,2)/4.0-k/2.0-2*t
        c3 = math.log(12*k,2)-k/4.0-3*t
        return max(c1, c2, c3)
    else:
        return math.log(1/7.0)+15*math.log(k,2)/4.0-k/2.0-2*t
This commit is contained in:
Janos Follath 2018-08-14 13:34:01 +01:00 committed by Darryl Green
parent 7c025a9f50
commit f301d23ceb
2 changed files with 46 additions and 17 deletions

View file

@ -726,7 +726,8 @@ int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B
int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N );
/**
* \brief Miller-Rabin primality test
* \brief Miller-Rabin primality test with error probability of
* 2<sup>-80</sup>
*
* \param X MPI to check
* \param f_rng RNG function
@ -747,7 +748,8 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
* mbedtls_mpi_gen_prime().
*/
typedef enum {
MBEDTLS_MPI_GEN_PRIME_FLAG_DH = 0x0001, /**< (X-1)/2 is prime too */
MBEDTLS_MPI_GEN_PRIME_FLAG_DH = 0x0001, /**< (X-1)/2 is prime too */
MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR = 0x0002, /**< lower error rate from 2<sup>-80</sup> to 2<sup>-128</sup> */
} mbedtls_mpi_gen_prime_flag_t;
/**

View file

@ -2056,7 +2056,7 @@ cleanup:
/*
* Miller-Rabin pseudo-primality test (HAC 4.24)
*/
static int mpi_miller_rabin( const mbedtls_mpi *X,
static int mpi_miller_rabin( const mbedtls_mpi *X, int flags,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@ -2077,12 +2077,27 @@ static int mpi_miller_rabin( const mbedtls_mpi *X,
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
i = mbedtls_mpi_bitlen( X );
/*
* HAC, table 4.4
*/
n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
{
/*
* 2^-80 error probability, number of rounds chosen per HAC, table 4.4
*/
n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
}
else
{
/*
* 2^-100 error probability, number of rounds computed based on HAC,
* fact 4.48
*/
n = ( ( i >= 1450 ) ? 4 : ( i >= 1150 ) ? 5 :
( i >= 1000 ) ? 6 : ( i >= 850 ) ? 7 :
( i >= 750 ) ? 8 : ( i >= 500 ) ? 13 :
( i >= 250 ) ? 28 : ( i >= 150 ) ? 40 : 51 );
}
for( i = 0; i < n; i++ )
{
@ -2160,7 +2175,7 @@ cleanup:
/*
* Pseudo-primality test: small factors, then Miller-Rabin
*/
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
int mpi_is_prime_internal( const mbedtls_mpi *X, int flags,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@ -2186,15 +2201,25 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
return( ret );
}
return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
return( mpi_miller_rabin( &XX, flags, f_rng, p_rng ) );
}
/*
* Pseudo-primality test, error probability 2^-80
*/
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
return mpi_is_prime_internal( X, 0, f_rng, p_rng );
}
/*
* Prime number generation
*
* If flags is 0 and nbits is at least 1024, then the procedure
* follows the RSA probably-prime generation method of FIPS 186-4.
* NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
* To generate an RSA key in a way recommended by FIPS 186-4, both primes must
* be either 1024 bits or 1536 bits long, and flags must contain
* MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
*/
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
int (*f_rng)(void *, unsigned char *, size_t),
@ -2231,7 +2256,7 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
{
ret = mbedtls_mpi_is_prime( X, f_rng, p_rng );
ret = mpi_is_prime_internal( X, flags, f_rng, p_rng );
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
@ -2264,8 +2289,10 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
*/
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
( ret = mpi_miller_rabin( X, flags, f_rng, p_rng ) )
== 0 &&
( ret = mpi_miller_rabin( &Y, flags, f_rng, p_rng ) )
== 0 )
goto cleanup;
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )