Systematically generate test cases for operation setup failure

The test suite test_suite_psa_crypto_op_fail now runs a large number
of automatically generated test cases which attempt to perform a
one-shot operation or to set up a multi-part operation with invalid
parameters. The following cases are fully covered (based on the
enumeration of valid algorithms and key types):
* An algorithm is not supported.
* The key type is not compatible with the algorithm (for operations
  that use a key).
* The algorithm is not compatible for the operation.

Some test functions allow the library to return PSA_ERROR_NOT_SUPPORTED
where the test code generator expects PSA_ERROR_INVALID_ARGUMENT or vice
versa. This may be refined in the future.

Some corner cases with algorithms combining a key agreement with a key
derivation are not handled properly. This will be fixed in follow-up
commits.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
Gilles Peskine 2022-03-15 17:26:33 +01:00
parent 390543381c
commit f8b6b503b4
3 changed files with 31724 additions and 258 deletions

View file

@ -21,6 +21,7 @@ generate only the specified files.
# limitations under the License. # limitations under the License.
import argparse import argparse
import enum
import os import os
import re import re
import sys import sys
@ -307,39 +308,126 @@ class OpFail:
"""Generate test cases for operations that must fail.""" """Generate test cases for operations that must fail."""
#pylint: disable=too-few-public-methods #pylint: disable=too-few-public-methods
class Reason(enum.Enum):
NOT_SUPPORTED = 0
INVALID = 1
INCOMPATIBLE = 2
def __init__(self, info: Information) -> None: def __init__(self, info: Information) -> None:
self.constructors = info.constructors self.constructors = info.constructors
key_type_expressions = self.constructors.generate_expressions(
sorted(self.constructors.key_types)
)
self.key_types = [crypto_knowledge.KeyType(kt_expr)
for kt_expr in key_type_expressions]
@staticmethod def make_test_case(
def hash_test_cases(alg: str) -> Iterator[test_case.TestCase]: self,
"""Generate hash failure test cases for the specified algorithm.""" alg: crypto_knowledge.Algorithm,
category: crypto_knowledge.AlgorithmCategory,
reason: 'Reason',
kt: Optional[crypto_knowledge.KeyType] = None,
not_deps: FrozenSet[str] = frozenset(),
) -> test_case.TestCase:
"""Construct a failure test case for a one-key or keyless operation."""
#pylint: disable=too-many-arguments,too-many-locals
tc = test_case.TestCase() tc = test_case.TestCase()
is_hash = (alg.startswith('PSA_ALG_SHA') or pretty_alg = re.sub(r'PSA_ALG_', r'', alg.expression)
alg.startswith('PSA_ALG_MD') or pretty_reason = reason.name.lower()
alg in frozenset(['PSA_ALG_RIPEMD160', 'PSA_ALG_ANY_HASH'])) if kt:
if is_hash: key_type = kt.expression
descr = 'not supported' pretty_type = re.sub(r'PSA_KEY_TYPE_', r'', key_type)
status = 'PSA_ERROR_NOT_SUPPORTED'
dependencies = ['!PSA_WANT_' + alg[4:]]
else: else:
descr = 'invalid' key_type = ''
status = 'PSA_ERROR_INVALID_ARGUMENT' pretty_type = ''
dependencies = automatic_dependencies(alg) tc.set_description('PSA {} {}: {}{}'
tc.set_description('PSA hash {}: {}' .format(category.name.lower(),
.format(descr, re.sub(r'PSA_ALG_', r'', alg))) pretty_alg,
pretty_reason,
' with ' + pretty_type if pretty_type else ''))
dependencies = automatic_dependencies(alg.base_expression, key_type)
for i, dep in enumerate(dependencies):
if dep in not_deps:
dependencies[i] = '!' + dep
tc.set_dependencies(dependencies) tc.set_dependencies(dependencies)
tc.set_function('hash_fail') tc.set_function(category.name.lower() + '_fail')
tc.set_arguments([alg, status]) arguments = []
yield tc if kt:
key_material = kt.key_material(kt.sizes_to_test()[0])
arguments += [key_type, test_case.hex_string(key_material)]
arguments.append(alg.expression)
error = ('NOT_SUPPORTED' if reason == self.Reason.NOT_SUPPORTED else
'INVALID_ARGUMENT')
arguments.append('PSA_ERROR_' + error)
tc.set_arguments(arguments)
return tc
def test_cases_for_algorithm(self, alg: str) -> Iterator[test_case.TestCase]: def no_key_test_cases(
self,
alg: crypto_knowledge.Algorithm,
category: crypto_knowledge.AlgorithmCategory,
) -> Iterator[test_case.TestCase]:
"""Generate failure test cases for keyless operations with the specified algorithm."""
if category == alg.category:
# Compatible operation, unsupported algorithm
for dep in automatic_dependencies(alg.base_expression):
yield self.make_test_case(alg, category,
self.Reason.NOT_SUPPORTED,
not_deps=frozenset([dep]))
else:
# Incompatible operation, supported algorithm
yield self.make_test_case(alg, category, self.Reason.INVALID)
def one_key_test_cases(
self,
alg: crypto_knowledge.Algorithm,
category: crypto_knowledge.AlgorithmCategory,
) -> Iterator[test_case.TestCase]:
"""Generate failure test cases for one-key operations with the specified algorithm."""
for kt in self.key_types:
key_is_compatible = kt.can_do(alg)
# To do: public key for a private key operation
if key_is_compatible and category == alg.category:
# Compatible key and operation, unsupported algorithm
for dep in automatic_dependencies(alg.base_expression):
yield self.make_test_case(alg, category,
self.Reason.NOT_SUPPORTED,
kt=kt, not_deps=frozenset([dep]))
elif key_is_compatible:
# Compatible key, incompatible operation, supported algorithm
yield self.make_test_case(alg, category,
self.Reason.INVALID,
kt=kt)
elif category == alg.category:
# Incompatible key, compatible operation, supported algorithm
yield self.make_test_case(alg, category,
self.Reason.INCOMPATIBLE,
kt=kt)
else:
# Incompatible key and operation. Don't test cases where
# multiple things are wrong, to keep the number of test
# cases reasonable.
pass
def test_cases_for_algorithm(
self,
alg: crypto_knowledge.Algorithm,
) -> Iterator[test_case.TestCase]:
"""Generate operation failure test cases for the specified algorithm.""" """Generate operation failure test cases for the specified algorithm."""
yield from self.hash_test_cases(alg) for category in crypto_knowledge.AlgorithmCategory:
if category == crypto_knowledge.AlgorithmCategory.PAKE:
# PAKE operations are not implemented yet
pass
elif category.requires_key():
yield from self.one_key_test_cases(alg, category)
else:
yield from self.no_key_test_cases(alg, category)
def all_test_cases(self) -> Iterator[test_case.TestCase]: def all_test_cases(self) -> Iterator[test_case.TestCase]:
"""Generate all test cases for operations that must fail.""" """Generate all test cases for operations that must fail."""
algorithms = sorted(self.constructors.algorithms) algorithms = sorted(self.constructors.algorithms)
for alg in self.constructors.generate_expressions(algorithms): for expr in self.constructors.generate_expressions(algorithms):
alg = crypto_knowledge.Algorithm(expr)
yield from self.test_cases_for_algorithm(alg) yield from self.test_cases_for_algorithm(alg)

View file

@ -3,6 +3,37 @@
#include "psa/crypto.h" #include "psa/crypto.h"
#include "test/psa_crypto_helpers.h" #include "test/psa_crypto_helpers.h"
static int test_equal_status( const char *test,
int line_no, const char* filename,
psa_status_t value1,
psa_status_t value2 )
{
if( ( value1 == PSA_ERROR_INVALID_ARGUMENT &&
value2 == PSA_ERROR_NOT_SUPPORTED ) ||
( value1 == PSA_ERROR_NOT_SUPPORTED &&
value2 == PSA_ERROR_INVALID_ARGUMENT ) )
{
return( 1 );
}
return( mbedtls_test_equal( test, line_no, filename, value1, value2 ) );
}
/** Like #TEST_EQUAL, but expects #psa_status_t values and treats
* #PSA_ERROR_INVALID_ARGUMENT and #PSA_ERROR_NOT_SUPPORTED as
* interchangeable.
*
* This test suite currently allows NOT_SUPPORTED and INVALID_ARGUMENT
* to be interchangeable in places where the library's behavior does not
* match the strict expectations of the test case generator. In the long
* run, it would be better to clarify the expectations and reconcile the
* library and the test case generator.
*/
#define TEST_STATUS( expr1, expr2 ) \
do { \
if( ! test_equal_status( #expr1 " == " #expr2, __LINE__, __FILE__, \
expr1, expr2 ) ) \
goto exit; \
} while( 0 )
/* END_HEADER */ /* END_HEADER */
@ -37,3 +68,295 @@ exit:
PSA_DONE( ); PSA_DONE( );
} }
/* END_CASE */ /* END_CASE */
/* BEGIN_CASE */
void mac_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t input[1] = {'A'};
uint8_t output[PSA_MAC_MAX_SIZE] = {0};
size_t length = SIZE_MAX;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
TEST_STATUS( expected_status,
psa_mac_sign_setup( &operation, key_id, alg ) );
TEST_STATUS( expected_status,
psa_mac_verify_setup( &operation, key_id, alg ) );
TEST_STATUS( expected_status,
psa_mac_compute( key_id, alg,
input, sizeof( input ),
output, sizeof( output ), &length ) );
TEST_STATUS( expected_status,
psa_mac_verify( key_id, alg,
input, sizeof( input ),
output, sizeof( output ) ) );
exit:
psa_mac_abort( &operation );
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t input[1] = {'A'};
uint8_t output[64] = {0};
size_t length = SIZE_MAX;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_ENCRYPT |
PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
TEST_STATUS( expected_status,
psa_cipher_encrypt_setup( &operation, key_id, alg ) );
TEST_STATUS( expected_status,
psa_cipher_decrypt_setup( &operation, key_id, alg ) );
TEST_STATUS( expected_status,
psa_cipher_encrypt( key_id, alg,
input, sizeof( input ),
output, sizeof( output ), &length ) );
TEST_STATUS( expected_status,
psa_cipher_decrypt( key_id, alg,
input, sizeof( input ),
output, sizeof( output ), &length ) );
exit:
psa_cipher_abort( &operation );
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t input[16] = "ABCDEFGHIJKLMNO";
uint8_t output[64] = {0};
size_t length = SIZE_MAX;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_ENCRYPT |
PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
TEST_STATUS( expected_status,
psa_aead_encrypt( key_id, alg,
input, sizeof( input ),
NULL, 0, input, sizeof( input ),
output, sizeof( output ), &length ) );
TEST_STATUS( expected_status,
psa_aead_decrypt( key_id, alg,
input, sizeof( input ),
NULL, 0, input, sizeof( input ),
output, sizeof( output ), &length ) );
exit:
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t input[1] = {'A'};
uint8_t output[PSA_SIGNATURE_MAX_SIZE] = {0};
size_t length = SIZE_MAX;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
TEST_STATUS( expected_status,
psa_sign_hash( key_id, alg,
input, sizeof( input ),
output, sizeof( output ), &length ) );
TEST_STATUS( expected_status,
psa_verify_hash( key_id, alg,
input, sizeof( input ),
output, sizeof( output ) ) );
exit:
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encryption_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t plaintext[PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE] = {0};
uint8_t ciphertext[PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE] = {0};
size_t length = SIZE_MAX;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_ENCRYPT |
PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
TEST_STATUS( expected_status,
psa_asymmetric_encrypt( key_id, alg,
plaintext, 1,
NULL, 0,
ciphertext, sizeof( ciphertext ),
&length ) );
TEST_STATUS( expected_status,
psa_asymmetric_decrypt( key_id, alg,
ciphertext, sizeof( ciphertext ),
NULL, 0,
plaintext, sizeof( plaintext ),
&length ) );
exit:
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_derivation_fail( int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_algorithm_t alg = alg_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_INIT( );
TEST_EQUAL( expected_status,
psa_key_derivation_setup( &operation, alg ) );
exit:
psa_key_derivation_abort( &operation );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_fail( int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg )
{
psa_status_t expected_status = expected_status_arg;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t public_key[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE] = {0};
size_t public_key_length = SIZE_MAX;
uint8_t output[PSA_SIGNATURE_MAX_SIZE] = {0};
size_t length = SIZE_MAX;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_INIT( );
psa_set_key_type( &attributes, key_type );
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_import_key( &attributes,
key_data->x, key_data->len,
&key_id ) );
if( PSA_KEY_TYPE_IS_KEY_PAIR( key_type ) ||
PSA_KEY_TYPE_IS_PUBLIC_KEY( key_type ) )
{
PSA_ASSERT( psa_export_public_key( key_id,
public_key, sizeof( public_key ),
&public_key_length ) );
}
TEST_STATUS( expected_status,
psa_raw_key_agreement( alg, key_id,
public_key, public_key_length,
output, sizeof( output ), &length ) );
#if defined(PSA_WANT_ALG_HKDF) && defined(PSA_WANT_ALG_SHA_256)
PSA_ASSERT( psa_key_derivation_setup( &operation,
PSA_ALG_HKDF( PSA_ALG_SHA_256 ) ) );
TEST_STATUS( expected_status,
psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key_id,
public_key, public_key_length ) );
#endif
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key_id );
psa_reset_key_attributes( &attributes );
PSA_DONE( );
}
/* END_CASE */

File diff suppressed because it is too large Load diff