While this is a static function, so right now we know we don't need the check,
things may change in the future, so better be on the safe side.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
CTR-DRBG and HMAC-DRBG may used the seed differently depending on its length.
To avoid leaks, pass them a constant-length seed.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Checking the budget only after the randomization is done means sometimes we
were randomizing first, then noticing we ran out of budget, return, come back
and randomize again before we finally normalize.
While this is fine from a correctness and security perspective, it's a minor
inefficiency, and can also be disconcerting while debugging, so we might as
well avoid it.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
It results in smaller code than using CTR_DRBG (64 bytes smaller on ARMv6-M
with arm-none-eabi-gcc 7.3.1), so let's use this by default when both are
available.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Unless MBEDTLS_ECP_NO_INTERNAL_RNG is defined, it's no longer possible for
f_rng to be NULL at the places that randomize coordinates.
Eliminate the NULL check in this case:
- it makes it clearer to reviewers that randomization always happens (unless
the user opted out at compile time)
- a NULL check in a place where it's easy to prove the value is never NULL
might upset or confuse static analyzers (including humans)
- removing the check saves a bit of code size
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Currently we draw pseudo-random numbers at the beginning and end of the main
loop. With ECP_RESTARTABLE, it's possible that between those two occasions we
returned from the multiplication function, hence lost our internal DRBG
context that lives in this function's stack frame. This would result in the
same pseudo-random numbers being used for blinding in multiple places. While
it's not immediately clear that this would give rise to an attack, it's also
absolutely not clear that it doesn't. So let's avoid that by using a DRBG
context that lives inside the restart context and persists across
return/resume cycles. That way the RESTARTABLE case uses exactly the
same pseudo-random numbers as the non-restartable case.
Testing and compile-time options:
- The case ECP_RESTARTABLE && !ECP_NO_INTERNAL_RNG is already tested by
component_test_no_use_psa_crypto_full_cmake_asan.
- The case ECP_RESTARTABLE && ECP_NO_INTERNAL_RNG didn't have a pre-existing
test so a component is added.
Testing and runtime options: when ECP_RESTARTABLE is enabled, the test suites
already contain cases where restart happens and cases where it doesn't
(because the operation is short enough or because restart is disabled (NULL
restart context)).
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
While it seems cleaner and more convenient to set it in the top-level
mbedtls_ecp_mul() function, the existence of the restartable option changes
things - when it's enabled the drbg context needs to be saved in the restart
context (more precisely in the restart_mul sub-context), which can only be
done when it's allocated, which is in the curve-specific mul function.
This commit only internal drbg management from mbedtls_ecp_mul() to
ecp_mul_mxz() and ecp_mul_comb(), without modifying behaviour (even internal),
and a future commit will modify the ecp_mul_comb() version to handle restart
properly.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
The case of MBEDTLS_ECP_RESTARTABLE isn't handled correctly yet: in that case
the DRBG instance should persist when resuming the operation. This will be
addressed in the next commit.
When both CTR_DRBG and HMAC_DRBG are available, CTR_DRBG is preferred since
both are suitable but CTR_DRBG tends to be faster and I needed a tie-breaker.
There are currently three possible cases to test:
- NO_INTERNAL_RNG is set -> tested in test_ecp_no_internal_rng
- it's unset and CTR_DRBG is available -> tested in the default config
- it's unset and CTR_DRBG is disabled -> tested in
test_ecp_internal_rng_no_ctr_drbg
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
No effect so far, except on dependency checking, as the feature it's meant to
disable isn't implemented yet (so the descriptions in config.h and the
ChangeLog entry are anticipation for now).
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
The previous version attempted to write the explicit IV from
the destination buffer before it has been written there.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
Invasive testing strategy
Create a new header `common.h`.
Introduce a configuration option `MBEDTLS_TEST_HOOKS` for test-specific code, to be used in accordance with the invasive testing strategy.
This is to avoid confusion with the class of macros
MBEDTLS_SSL_PROTO_TLS1_X
which have an underscore between major and minor version number.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
TLS 1.3 record protection allows the addition of an arbitrary amount
of padding.
This commit introduces a configuration option
```
MBEDTLS_SSL_TLS13_PADDING_GRANULARITY
```
The semantics of this option is that padding is chosen in a minimal
way so that the padded plaintext has a length which is a multiple of
MBEDTLS_SSL_TLS13_PADDING_GRANULARITY.
For example, setting MBEDTLS_SSL_TLS13_PADDING_GRANULARITY to 1024
means that padded plaintexts will have length 1024, 2048, ..., while
setting it to 1 means that no padding will be used.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
The structure `mbedtls_ssl_transform` representing record protection
transformations should ideally be used through a function-based
interface only, as this will ease change of implementation as well
as the addition of new record protection routines in the future.
This commit makes a step in that direction by introducing the
helper function `ssl_transform_get_explicit_iv_len()` which
returns the size of the pre-expansion during record encryption
due to the potential addition of an explicit IV.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
This commit simplifies nonce derivation for AEAD based record protection
routines in the following way.
So far, code distinguished between the cases of GCM+CCM and ChachaPoly:
- In the case of GCM+CCM, the AEAD nonce is the concatentation
of a 4-byte Fixed IV and a dynamically chosen 8-byte IV which is prepended
to the record. In Mbed TLS, this is always chosen to be the record sequence
number, but it need not to.
- In the case of ChaChaPoly, the AEAD nonce is derived as
`( 12-byte Fixed IV ) XOR ( 0 || 8-byte dynamic IV == record seq nr )`
and the dynamically chosen IV is no longer prepended to the record.
This commit removes this distinction by always computing the record nonce
via the formula
`IV == ( Fixed IV || 0 ) XOR ( 0 || Dynamic IV )`
The ChaChaPoly case is recovered in case `Len(Fixed IV) == Len(IV)`, and
GCM+CCM is recovered when `Len(IV) == Len(Fixed IV) + Len(Dynamic IV)`.
Moreover, a getter stub `ssl_transform_aead_dynamic_iv_is_explicit()`
is introduced which infers from a transform whether the dynamically
chosen part of the IV is explicit, which in the current implementation
of `mbedtls_ssl_transform` can be derived from the helper field
`mbedtls_ssl_transform::fixed_ivlen`.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
The computation of the per-record nonce for AEAD record protection
varies with the AEAD algorithm and the TLS version in use.
This commit introduces a helper function for the nonce computation
to ease readability of the quite monolithic record encrytion routine.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
The previous record protection code added the explicit part of the
record nonce prior to encrypting the record. This temporarily leaves
the record structure in the undesireable state that the data outsie
of the interval `rec->data_offset, .., rec->data_offset + rec->data_len`
has already been written.
This commit moves the addition of the explicit IV past record encryption.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
The internal functions
`ssl_cid_{build/parse}_inner_plaintext()`
implement the TLSInnerPlaintext mechanism used by DTLS 1.2 + CID
in order to allow for flexible length padding and to protect the
true content type of a record.
This feature is also present in TLS 1.3 support for which is under
development. As a preparatory step towards sharing the code between
the case of DTLS 1.2 + CID and TLS 1.3, this commit renames
`ssl_cid_{build/parse}_inner_plaintext()`
to
`ssl_{build/parse}_inner_plaintext()`.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
Now that lifetimes have structures and secure element drivers handle
all the lifetimes with a certain location, update driver registration
to take a location as argument rather than a lifetime.
This commit updates the Mbed TLS implementation.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
On dual world platforms, we want to run the PK module (pk.c) on the NS
side so TLS can use PSA APIs via the PK interface. PK currently has a
hard dependency on mbedtls_ecc_group_to_psa() which is declared in
crypto_extra.h, but only defined in psa_crypto.c, which is only built
for the S side.
Without this change, dual world platforms get error messages like the
following.
[Error] @0,0: L6218E: Undefined symbol mbedtls_ecc_group_to_psa (referred from BUILD/LPC55S69_NS/ARM/mbed-os/features/mbedtls/mbed-crypto/src/pk.o)
Make mbedtls_ecc_group_to_psa() inline within crypto_extra.h so that it
is available to both NS and S world code.
Fixes#3300
Signed-off-by: Darryl Green <darryl.green@arm.com>
Signed-off-by: Jaeden Amero <jaeden.amero@arm.com>