The CA callback changes introduce mbedtls_calloc() and
mbedtls_free() to ssl_client2 and ssl_server2, which
wasn't defined unless MBEDTLS_PLATFORM_C was set.
Additional work done as part of merge:
- Run ./tests/scripts/check-generated-files.sh and check in the
resulting changes to programs/ssl/query_config.c
Additional changes to temporarily enable running tests:
ssl_srv.c and test_suite_ecdh use mbedtls_ecp_group_load instead of
mbedtls_ecdh_setup
test_suite_ctr_drbg uses mbedtls_ctr_drbg_update instead of
mbedtls_ctr_drbg_update_ret
The previous prototype gave warnings are the strings produced by #cond and
__FILE__ are const, so we shouldn't implicitly cast them to non-const.
While at it modifying most example programs:
- include the header that has the function declaration, so that the definition
can be checked to match by the compiler
- fix whitespace
- make it work even if PLATFORM_C is not defined:
- CHECK_PARAMS is not documented as depending on PLATFORM_C and there is
no reason why it should
- so, remove the corresponding #if defined in each program...
- and add missing #defines for mbedtls_exit when needed
The result has been tested (make all test with -Werror) with the following
configurations:
- full with CHECK_PARAMS with PLATFORM_C
- full with CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS with PLATFORM_C
Additionally, it has been manually tested that adding
mbedtls_aes_init( NULL );
near the normal call to mbedtls_aes_init() in programs/aes/aescrypt2.c has the
expected effect when running the program.
The sample programs require an additional handler function of
mbedtls_param_failed() to handle any failed parameter validation checks enabled
by the MBEDTLS_CHECK_PARAMS config.h option.
Previously, command line arguments `psk_slot` and `psk_list_slot`
could be used to indicate the PSA key slots that the example
applications should use to store the PSK(s) provided.
This commit changes this approach to use the utility function
`mbedtls_psa_get_free_key_slot()` to obtain free key slots from
the PSA Crypto implementation automatically, so that users only
need to pass boolean flags `psk_opaque` and `psk_list_opaque`
on the command line to enable / disable PSA-based opaque PSKs.
This commit adds command line parameters `psk_slot` and `psk_list_slot`
to the example application `programs/ssl/ssl_server2`. These have the
following semantics:
- `psk_slot`: The same semantics as for the `ssl_client2` example
application. That is, if a PSK is configured through the use
of the command line parameters `psk` and `psk_identity`, then
`psk_slot=X` can be used to import the PSK into PSA key slot X
and registering it statically with the SSL configuration through
the new API call mbedtls_ssl_conf_hs_opaque().
- `psk_list_slot`: In addition to the static PSK registered in the
the SSL configuration, servers can register a callback for picking
the PSK corresponding to the PSK identity that the client chose.
The `ssl_server2` example application uses such a callback to select
the PSK from a list of PSKs + Identities provided through the
command line parameter `psk_list`, and to register the selected
PSK via `mbedtls_ssl_set_hs_psk()`. In this case, the new parameter
`psk_list_slot=X` has the effect of registering all PSKs provided in
in `psk_list` as PSA keys in the key slots starting from slot `X`,
and having the PSK selection callback register the chosen PSK
through the new API function `mbedtls_ssl_set_hs_psk_opaque()`.
If `MBEDTLS_MEMORY_BUFFER_ALLOC_C` is configured and Mbed TLS'
custom buffer allocator is used for calloc() and free(), the
read buffer used by the server example application is allocated
from the buffer allocator, but freed after the buffer allocator
has been destroyed. If memory backtracing is enabled, this leaves
a memory leak in the backtracing structure allocated for the buffer,
as found by valgrind.
Fixes#2069.
This setting belongs to the individual connection, not to a configuration
shared by many connections. (If a default value is desired, that can be handled
by the application code that calls mbedtls_ssl_set_mtu().)
There are at least two ways in which this matters:
- per-connection settings can be adjusted if MTU estimates become available
during the lifetime of the connection
- it is at least conceivable that a server might recognize restricted clients
based on range of IPs and immediately set a lower MTU for them. This is much
easier to do with a per-connection setting than by maintaining multiple
near-duplicated ssl_config objects that differ only by the MTU setting.
This commit adds a new command line option `dgram_packing`
to the example server application programs/ssl/ssl_server2
allowing to allow/forbid the use of datagram packing.
For now, just check that it causes us to fragment. More tests are coming in
follow-up commits to ensure we respect the exact value set, including when
renegotiating.
When MBEDTLS_MEMORY_BUFFER_ALLOC_C was defined, the sample ssl_server2.c was
using its own memory buffer for memory allocated by the library. The memory
used wasn't obvious, so this adds a macro for the memory buffer allocated to
make the allocated memory size more obvious and hence easier to configure.
Newer features in the library have increased the overall RAM usage of the
library, when all features are enabled. ssl_server2.c, with all features enabled
was running out of memory for the ssl-opt.sh test 'Authentication: client
max_int chain, server required'.
This commit increases the memory buffer allocation for ssl_server2.c to allow
the test to work with all features enabled.
In ssl_server2, the private key objects are normally local variables
of the main function. However this does not hold for private keys in
the SNI configuration. When async callbacks are used, the test code
transfers the ownership of the private keys to the async callbacks.
Therefore the test code must free the SNI private keys through the
async callbacks (but it must not free the straight private keys this
way since they are not even heap-allocated).
When testing async callbacks with SNI, make all the keys async, not
just the first one. Otherwise the test is fragile with respect to
whether a key is used directly or through the async callbacks.
In the current test code, the object that is used as a public key in
the certificate also contains a private key. However this is because
of the way the stest code is built and does not demonstrate the API in
a useful way. Use mbedtls_pk_check_pair, which is not what real-world
code would do (since the private key would typically be in an external
cryptoprocessor) but is a more representative placeholder.
Rename to mbedtls_ssl_get_async_operation_data and
mbedtls_ssl_set_async_operation_data so that they're about
"async operation data" and not about some not-obvious "data".
The certificate passed to async callbacks may not be the one set by
mbedtls_ssl_conf_own_cert. For example, when using an SNI callback,
it's whatever the callback is using. Document this, and add a test
case (and code sample) with SNI.
Testing the case where the resume callback returns an error at the
beginning and the case where it returns an error at the end is
redundant. Keep the test after the output has been produced, to
validate that the product does not use even a valid output if the
return value is an error code.
Document how the SSL async sign callback must treat its md_alg and
hash parameters when doing an RSA signature: sign-the-hash if md_alg
is nonzero (TLS 1.2), and sign-the-digestinfo if md_alg is zero
(TLS <= 1.1).
In ssl_server2, don't use md_alg=MBEDTLS_MD_NONE to indicate that
ssl_async_resume must perform an encryption, because md_alg is also
MBEDTLS_MD_NONE in TLS <= 1.1. Add a test case to exercise this
case (signature with MBEDTLS_MD_NONE).