This change fixes a regression introduced by an earlier commit that
modified x509_crt_verify_top() to ensure that valid certificates
that are after past or future valid in the chain are processed. However
the change introduced a change in behaviour that caused the
verification flags BADCERT_EXPIRED and BADCERT_FUTURE to always be set
whenever there is a failure in the verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
To do so, a temporary pointer to the first future or past valid
certificate is maintained while traversing the chain. If a truly valid
certificate is found then that one is used, otherwise if no valid
certificate is found and the end of the chain is reached, the program
reverts back to using the future or past valid certificate.
In a USENIX WOOT '16 paper the authors warn about a security risk
of random Initialisation Vectors (IV) repeating values.
The MBEDTLS_SSL_AEAD_RANDOM_IV feature is affected by this risk and
it isn't compliant with RFC5116. Furthermore, strictly speaking it
is a different cipher suite from the TLS (RFC5246) point of view.
Removing the MBEDTLS_SSL_AEAD_RANDOM_IV feature to resolve the above
problems.
Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky and Philipp
Jovanovic, "Nonce-Disrespecting Adversaries: Practical Forgery Attacks
on GCM in TLS", USENIX WOOT '16
Fix an issue that caused valid certificates being rejected whenever an
expired or not yet valid version of the trusted certificate was before the
valid version in the trusted certificate list.
Fix an issue that caused valid certificates being rejected whenever an
expired or not yet valid version of the trusted certificate was before the
valid version in the trusted certificate list.
In a USENIX WOOT '16 paper the authors warn about a security risk
of random Initialisation Vectors (IV) repeating values.
The MBEDTLS_SSL_AEAD_RANDOM_IV feature is affected by this risk and
it isn't compliant with RFC5116. Furthermore, strictly speaking it
is a different cipher suite from the TLS (RFC5246) point of view.
Removing the MBEDTLS_SSL_AEAD_RANDOM_IV feature to resolve the above
problems.
Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky and Philipp
Jovanovic, "Nonce-Disrespecting Adversaries: Practical Forgery Attacks
on GCM in TLS", USENIX WOOT '16
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
Fix an issue that caused valid certificates being rejected whenever an
expired or not yet valid version of the trusted certificate was before the
valid version in the trusted certificate list.
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
The certificates are not valid according to the RFC, but are in wide
distribution across the internet. Hence the request to add a
compile-time flag to accept these certificates if wanted by the
application.
If POLARSSL_RELAXED_X509_DATE is enabled it will allow dates without
seconds, and allow dates with timezones (but doesn't actually use
the timezone).
Patch provided by OpenVPN.
Fix an issue that caused valid certificates being rejected whenever an
expired or not yet valid version of the trusted certificate was before the
valid version in the trusted certificate list.
The server code parses the client hello extensions even when the
protocol is SSLv3 and this behaviour is non compliant with rfc6101.
Also the server sends extensions in the server hello and omitting
them may prevent interoperability problems.