Reword test cases to be easier to read and understand.
Adds comments to better explain what the test is doing.
Signed-off-by: Chris Jones <christopher.jones@arm.com>
Adds test cases to ensure that `mbedtls_mpi_exp_mod` will return an error with
an exponent or modulus that is greater than `MBEDTLS_MPI_MAX_SIZE` in size.
Adds test cases to ensure that Diffie-Hellman will fail to make a key pair
(using `mbedtls_dhm_make_public`) when the prime modulus is greater than
`MBEDTLS_MPI_MAX_SIZE` in size.
Signed-off-by: Chris Jones <christopher.jones@arm.com>
The signature of mbedtls_mpi_cmp_mpi_ct() meant to support using it in
place of mbedtls_mpi_cmp_mpi(). This meant full comparison functionality
and a signed result.
To make the function more universal and friendly to constant time
coding, we change the result type to unsigned. Theoretically, we could
encode the comparison result in an unsigned value, but it would be less
intuitive.
Therefore we won't be able to represent the result as unsigned anymore
and the functionality will be constrained to checking if the first
operand is less than the second. This is sufficient to support the
current use case and to check any relationship between MPIs.
The only drawback is that we need to call the function twice when
checking for equality, but this can be optimised later if an when it is
needed.
Primality tests have to deal with different distribution when generating
primes and when validating primes.
These new tests are testing if mbedtls_mpi_is_prime() is working
properly in the latter setting.
The new tests involve pseudoprimes with maximum number of
non-witnesses. The non-witnesses were generated by printing them
from mpi_miller_rabin(). The pseudoprimes were generated by the
following function:
void gen_monier( mbedtls_mpi* res, int nbits )
{
mbedtls_mpi p_2x_plus_1, p_4x_plus_1, x, tmp;
mbedtls_mpi_init( &p_2x_plus_1 );
mbedtls_mpi_init( &p_4x_plus_1 );
mbedtls_mpi_init( &x ); mbedtls_mpi_init( &tmp );
do
{
mbedtls_mpi_gen_prime( &p_2x_plus_1, nbits >> 1, 0,
rnd_std_rand, NULL );
mbedtls_mpi_sub_int( &x, &p_2x_plus_1, 1 );
mbedtls_mpi_div_int( &x, &tmp, &x, 2 );
if( mbedtls_mpi_get_bit( &x, 0 ) == 0 )
continue;
mbedtls_mpi_mul_int( &p_4x_plus_1, &x, 4 );
mbedtls_mpi_add_int( &p_4x_plus_1, &p_4x_plus_1, 1 );
if( mbedtls_mpi_is_prime( &p_4x_plus_1, rnd_std_rand,
NULL ) == 0 )
break;
} while( 1 );
mbedtls_mpi_mul_mpi( res, &p_2x_plus_1, &p_4x_plus_1 );
}
1) `mbedtls_rsa_import_raw` used an uninitialized return
value when it was called without any input parameters.
While not sensible, this is allowed and should be a
succeeding no-op.
2) The MPI test for prime generation missed a return value
check for a call to `mbedtls_mpi_shift_r`. This is neither
critical nor new but should be fixed.
3) Both the RSA keygeneration example program and the
RSA test suites contained code initializing an RSA context
after a potentially failing call to CTR DRBG initialization,
leaving the corresponding RSA context free call in the
cleanup section of the respective function orphaned.
While this defect existed before, Coverity picked up on
it again because of newly introduced MPI's that were
also wrongly initialized only after the call to CTR DRBG
init. The commit fixes both the old and the new issue
by moving the initializtion of both the RSA context and
all MPI's prior to the first potentially failing call.
* yanesca/iss309:
Improved on the previous fix and added a test case to cover both types of carries.
Removed recursion from fix#309.
Improved on the fix of #309 and extended the test to cover subroutines.
Tests and fix added for #309 (inplace mpi doubling).
Changes include:
- Integers marked with '#' in the .function files.
- Strings should have "" in .data files.
- String comparison instead of preprocessor-like replace for e.g. '=='
- Params and variables cannot have the same name in .function files