mbedtls_ctr_drbg_seed() always set the entropy length to the default,
so a call to mbedtls_ctr_drbg_set_entropy_len() before seed() had no
effect. Change this to the more intuitive behavior that
set_entropy_len() sets the entropy length and seed() respects that and
only uses the default entropy length if there was no call to
set_entropy_len().
This removes the need for the test-only function
mbedtls_ctr_drbg_seed_entropy_len(). Just call
mbedtls_ctr_drbg_set_entropy_len() followed by
mbedtls_ctr_drbg_seed(), it works now.
Move the definitions of mbedtls_ctr_drbg_seed_entropy_len() and
mbedtls_ctr_drbg_seed() to after they are used. This makes the code
easier to read and to maintain.
mbedtls_hmac_drbg_seed() always set the entropy length to the default,
so a call to mbedtls_hmac_drbg_set_entropy_len() before seed() had no
effect. Change this to the more intuitive behavior that
set_entropy_len() sets the entropy length and seed() respects that and
only uses the default entropy length if there was no call to
set_entropy_len().
Fix a signed int overflow in mbedtls_asn1_get_int() for numbers
between INT_MAX+1 and UINT_MAX (typically 0x80000000..0xffffffff).
This was undefined behavior which in practice would typically have
resulted in an incorrect value, but which may plausibly also have
caused the postcondition (*p == initial<*p> + len) to be violated.
Credit to OSS-Fuzz.
Add a parameter to the p_validate_slot_number method to allow the
driver to modify the persistent data.
With the current structure of the core, the persistent data is already
updated. All it took was adding a way to modify it.
When registering a key in a secure element, go through the transaction
mechanism. This makes the code simpler, at the expense of a few extra
storage operations. Given that registering a key is typically very
rare over the lifetime of a device, this is an acceptable loss.
Drivers must now have a p_validate_slot_number method, otherwise
registering a key is not possible. This reduces the risk that due to a
mistake during the integration of a device, an application might claim
a slot in a way that is not supported by the driver.
If none of the inputs to a key derivation is a
PSA_KEY_DERIVATION_INPUT_SECRET passed with
psa_key_derivation_input_key(), forbid
psa_key_derivation_output_key(). It usually doesn't make sense to
derive a key object if the secret isn't itself a proper key.
Allow a direct input as the SECRET input step in a key derivation, in
addition to allowing DERIVE keys. This makes it easier for
applications to run a key derivation where the "secret" input is
obtained from somewhere else. This makes it possible for the "secret"
input to be empty (keys cannot be empty), which some protocols do (for
example the IV derivation in EAP-TLS).
Conversely, allow a RAW_DATA key as the INFO/LABEL/SALT/SEED input to a key
derivation, in addition to allowing direct inputs. This doesn't
improve security, but removes a step when a personalization parameter
is stored in the key store, and allows this personalization parameter
to remain opaque.
Add test cases that explore step/key-type-and-keyhood combinations.
The signature must have exactly the same length as the key, it can't
be longer. Fix#258
If the signature doesn't have the correct size, that's an invalid
signature, not a problem with an output buffer size. Fix the error code.
Add test cases.
In psa_asymmetric_sign, immediately reject an empty signature buffer.
This can never be right.
Add test cases (one RSA and one ECDSA).
Change the SE HAL mock tests not to use an empty signature buffer.
Zero-length keys are rejected at creation time, so we don't need any
special handling internally.
When exporting a key, we do need to take care of the case where the
output buffer is empty, but this is easy: an empty output buffer is
never valid.
Document how mbedtls_asn1_store_named_data allocates val.p in the new
or modified entry.
Change the behavior to be more regular, always setting the new length
to val_len. This does not affect the previous documented behavior
since this aspect was not documented. This does not affect current
usage in Mbed TLS's X.509 module where calls with the same OID always
use the same size for the associated value.
At the end of `psa_hmac_setup_internal()`, the ipad is cleared.
However, the size that was given to clear was `key_len` which is larger
than the size of `ipad`.
* crypto/development: (77 commits)
all.sh: disable MEMORY_BUFFER_ALLOC in cmake asan build
Unify gcc and clang cmake flags to test with UBsan
Add an input check in psa_its_set
Remove storage errors from psa_generate_random
Update getting_started.md
Update based on Jaeden's comments.
Update getting_started.md
Fix return code warnings
Update getting_started.md
Fix warnings
Add PSA_ERROR_STORAGE_FAILURE to psa_cipher_generate_iv
Remove errorneous insert
Add STORAGE_FAILURE everywhere + add missing codes
Add storage failure to psa_mac_verify_finish
Add storage failure to psa_mac_sign_finish
Add PSA_ERROR_STORAGE_FAILURE to psa_aead_*_setup functions
Added PSA_ERROR_BAD_STATE to functions with operations
Added extra bad state case to psa_hash_setup
Add missing return codes to psa_generate_key
Add PSA_ERROR_BUFFER_TOO_SMALL to psa_mac_compute
...
We were still reusing the internal HMAC-DRBG of the deterministic ECDSA
for blinding. This meant that with cryptographically low likelyhood the
result was not the same signature as the one the deterministic ECDSA
algorithm has to produce (however it is still a valid ECDSA signature).
To correct this we seed a second HMAC-DRBG with the same seed to restore
correct behavior. We also apply a label to avoid reusing the bits of the
ephemeral key for a different purpose and reduce the chance that they
leak.
This workaround can't be implemented in the restartable case without
penalising the case where external RNG is available or completely
defeating the purpose of the restartable feature, therefore in this case
the small chance of incorrect behavior remains.
The current interface does not allow passing an RNG, which is needed for
blinding. Using the scheme's internal HMAC-DRBG results the same
blinding values for the same key and message, diminishing the
effectiveness of the countermeasure. A new function
`mbedtls_ecdsa_det_ext` is available to address this problem.