The RSA key generation test needs strong entropy to succeed. This commit captures the presence of a strong entropy
source in a preprocessor flag and only runs the key generation test if that flag is set.
The function `mbedtls_rsa_gen_key` from `test_suite_rsa.function` initialized a stack allocated RSA context only after
seeding the CTR DRBG. If the latter operation failed, the cleanup code tried to free the uninitialized RSA context,
potentially resulting in a segmentation fault. Fixes one aspect of #1023.
If we didn't walk the whole chain, then there may be any kind of errors in the
part of the chain we didn't check, so setting all flags looks like the safe
thing to do.
Inspired by test code provided by Nicholas Wilson in PR #351.
The test will fail if someone sets MAX_INTERMEDIATE_CA to a value larger than
18 (default is 8), which is hopefully unlikely and can easily be fixed by
running long.sh again with a larger value if it ever happens.
Current behaviour is suboptimal as flags are not set, but currently the goal
is only to document/test existing behaviour.
By default, keep allowing SHA-1 in key exchange signatures. Disabling
it causes compatibility issues, especially with clients that use
TLS1.2 but don't send the signature_algorithms extension.
SHA-1 is forbidden in certificates by default, since it's vulnerable
to offline collision-based attacks.
There is now one test case to validate that SHA-1 is rejected in
certificates by default, and one test case to validate that SHA-1 is
supported if MBEDTLS_TLS_DEFAULT_ALLOW_SHA1 is #defined.
SHA-1 is now disabled by default in the X.509 layer. Explicitly enable
it in our tests for now. Updating all the test data to SHA-256 should
be done over time.
The ECJPAKE test suite uses a size zero array for the empty password
used in the tests, which is not valid C. This commit fixes this.
This originally showed up as a compilation failure on Visual Studio
2015, documented in IOTSSL-1242, but can also be observed with GCC
when using the -Wpedantic compilation option.
The test case was generated by modifying our signature code so that it
produces a 7-byte long padding (which also means garbage at the end, so it is
essential in to check that the error that is detected first is indeed the
padding rather than the final length check).
The modular inversion function hangs when provided with the modulus 1. This commit refuses this modulus with a BAD_INPUT error code. It also adds a test for this case.
Fix a buffer overflow when writting a string representation of an MPI
number to a buffer in hexadecimal. The problem occurs because hex
digits are written in pairs and this is not accounted for in the
calculation of the required buffer size when the number of digits is
odd.
The first three test cases from test_suites_pkparse.data failed because
the key file they read requires DES to be read. However, MBEDTLS_DES_C
was missing from the dependency list.
This curve has special arithmetic on 64 bit platforms and an untested
path lead to trying to free a buffer on the stack.
For the sake of completeness, a test case for a point with non-affine
coordinates has been added as well.
Fixes a regression introduced by an earlier commit that modified
x509_crt_verify_top() to ensure that valid certificates that are after past or
future valid in the chain are processed. However the change introduced a change
in behaviour that caused the verification flags MBEDTLS_X509_BADCERT_EXPIRED and
MBEDTLS_BADCERT_FUTURE to always be set whenever there is a failure in the
verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
Modifies the function mbedtls_x509_crl_parse() to ensure that a CRL in PEM
format with trailing characters after the footer does not result in the
execution of an infinite loop.
Fix potential integer overflows in the following functions:
* mbedtls_md2_update() to be bypassed and cause
* mbedtls_cipher_update()
* mbedtls_ctr_drbg_reseed()
This overflows would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
The tests load certificate chains from files. The CA chains contain a
past or future certificate and an invalid certificate. The test then
checks that the flags set are MBEDTLS_X509_BADCERT_EXPIRED or
MBEDTLS_X509_BADCERT_FUTURE.
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fixes the test suites to consistently use mbedtls_fprintf to output to
stdout or stderr.
Also redirects output from the tests to /dev/null to avoid confusing
output if the test suite code or library outputs anything to stdout.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fixes the test suites to consistently use mbedtls_fprintf to output to
stdout or stderr.
Also redirects output from the tests to /dev/null to avoid confusing
output if the test suite code or library outputs anything to stdout.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
Changes to allow the entropy tests to work for configurations without an
entropy seed file (MBEDTLS_ENTROPY_NV_SEED), and with no entropy sources
configured (MBEDTLS_TEST_NULL_ENTROPY).
Instead of polling the hardware entropy source a single time and
comparing the output with itself, the source is polled at least twice
and make sure that the separate outputs are different.
The self test is a quick way to check at startup whether the entropy
sources are functioning correctly. The self test only polls 8 bytes
from the default entropy source and performs the following checks:
- The bytes are not all 0x00 or 0xFF.
- The hardware does not return an error when polled.
- The entropy does not provide data in a patter. Only check pattern
at byte, word and long word sizes.