With the attribute-based key creation API, it is no longer possible to
have a handle to a slot that does not hold key material. Remove all
corresponding tests.
Implement attribute querying.
Test attribute getters and setters. Use psa_get_key_attributes instead
of the deprecated functions psa_get_key_policy or
psa_get_key_information in most tests.
Since the format change for EC public key import from
SubjectPublicKeyInfo to the ECPoint content, it is no longer possible
to import a key with metadata marking it as ECDH-only. This test was
converted systematically but now no longer has any purpose since the
public key is now like any other public key.
Allow either the key derivation step or the key agreement step to
fail.
These tests should be split into three groups: key derivation setup
tests with an algorithm that includes a key agreement step, and
multipart key agreement failure tests, and raw key agreement failure
tests.
Merge the Mbed Crypto development branch a little after
mbedcrypto-1.0.0 into the PSA Crypto API 1.0 beta branch a little
after beta 2.
Summary of merge conflicts:
* Some features (psa_copy_key, public key format without
SubjectPublicKeyInfo wrapping) went into both sides, but with a few
improvements on the implementation side. For those, take the
implementation side.
* The key derivation API changed considerably on the API side. This
merge commit generally goes with the updated API except in the tests
where it keeps some aspects of the implementation.
Due to the divergence between the two branches on key derivation and
key agreement, test_suite_psa_crypto does not compile. This will be
resolved in subsequent commits.
Extend hash bad order test in line with the new bad order tests for MAC
and cipher, covering more cases and making comments and test layout
consistent.
Ensure that when doing hash operations out of order, PSA_ERROR_BAD_STATE
is returned as documented in crypto.h and the PSA Crypto specification.
In multipart cipher tests, test that each step of psa_cipher_update
produces output of the expected length. The length is hard-coded in
the test data since it depends on the mode.
The length of the output of psa_cipher_finish is effectively tested
because it's the total output length minus the length produced by the
update steps.
Test data obtained with Python+PyCrypto:
AES.new(key, mode=AES.MODE_CTR, counter=Crypto.Util.Counter.new(128, initial_value=0x2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a)).encrypt(plaintext.decode('hex')).encode('hex')
For must-fail asymmetric decryption tests, add an output size parameter
so that tests can directly control what output buffer size they allocate
and use independently from the key size used. This enables better
testing of behavior with various output buffer sizes.
Test a few cases. The logic to combine the constraint is similar to
the logic to combine the source and target, so it's ok to have less
parameter domain coverage for constraints.
Split the testing into tests that exercise policies in
test_suite_psa_crypto and tests that exercise slot content (slot
states, key material) in test_suite_psa_crypto_slot_management.
Test various cases of source and target policies with and without
wildcards. Missing: testing of the policy constraint on psa_copy_key
itself.
Test several key types (raw data, AES, RSA). Test with the
source or target being persistent.
Add failure tests (incompatible policies, source slot empty, target
slot occupied).
Remove front matter from our EC key format, to make it just the contents
of an ECPoint as defined by SEC1 section 2.3.3.
As a consequence of the simplification, remove the restriction on not
being able to use an ECDH key with ECDSA. There is no longer any OID
specified when importing a key, so we can't reject importing of an ECDH
key for the purpose of ECDSA based on the OID.
Remove pkcs-1 and rsaEncryption front matter from RSA public keys. Move
code that was shared between RSA and other key types (like EC keys) to
be used only with non-RSA keys.
Change the key derivation API to take inputs in multiple steps,
instead of a single one-site-fits-poorly function.
Conflicts:
* include/psa/crypto.h: merge independent changes in the documentation
of psa_key_agreement (public_key from the work on public key formats
vs general description and other parameters in the work on key derivation).
* tests/suites/test_suite_psa_crypto.data: update the key agreement
tests from the work on key derivation to the format from the work on
public key formats.
* tests/suites/test_suite_psa_crypto_metadata.function: reconcile the
addition of unrelated ALG_IS_xxx macros
Get rid of "key selection" algorithms (of which there was only one:
raw key selection).
Encode key agreement by combining a raw key agreement with a KDF,
rather than passing the KDF as an argument of a key agreement macro.
Remove front matter from our EC key format, to make it just the contents
of an ECPoint as defined by SEC1 section 2.3.3.
As a consequence of the simplification, remove the restriction on not
being able to use an ECDH key with ECDSA. There is no longer any OID
specified when importing a key, so we can't reject importing of an ECDH
key for the purpose of ECDSA based on the OID.
You can use PSA_ALG_ANY_HASH to build the algorithm value for a
hash-and-sign algorithm in a policy. Then the policy allows usage with
this hash-and-sign family with any hash.
Test that PSA_ALG_ANY_HASH-based policies allow a specific hash, but
not a different hash-and-sign family. Test that PSA_ALG_ANY_HASH is
not valid for operations, only in policies.
Remove pkcs-1 and rsaEncryption front matter from RSA public keys. Move
code that was shared between RSA and other key types (like EC keys) to
be used only with non-RSA keys.
Add new initializers for cipher operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for MAC operation objects and use them in our tests
and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for hash operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for key policies and use them in our docs, example
programs, tests, and library code. Prefer using the macro initializers
due to their straightforwardness.
This commit finishes the removal of support for direct access to key
slots in psa_crypto.c.
This marks the end of the necessary phase of the transition to key
handles. The code should subsequently be refactored to move key slot
management from psa_crypto.c to psa_crypto_slot_management.c.
Switch from the direct use of slot numbers to handles allocated by
psa_allocate_key.
This commit does not affect persistent key tests except for the one
test function in test_suite_psa_crypto that uses persistent keys
(persistent_key_load_key_from_storage).
The general principle for each function is:
* Change `psa_key_slot_t slot` to `psa_key_handle_t handle`.
* Call psa_allocate_key() before setting the policy of the slot,
or before creating key material in functions that don't set a policy.
* Some PSA_ERROR_EMPTY_SLOT errors become PSA_ERROR_INVALID_HANDLE
because there is now a distinction between not having a valid
handle, and having a valid handle to a slot that doesn't contain key
material.
* In tests that use symmetric keys, calculate the max_bits parameters
of psa_allocate_key() from the key data size. In tests where the key
may be asymmetric, call an auxiliary macro KEY_BITS_FROM_DATA which
returns an overapproximation. There's no good way to find a good
value for max_bits with the API, I think the API should be tweaked.
Implement psa_allocate_key, psa_open_key, psa_create_key,
psa_close_key.
Add support for keys designated to handles to psa_get_key_slot, and
thereby to the whole API.
Allocated and non-allocated keys can coexist. This is a temporary
stage in order to transition from the use of direct slot numbers to
allocated handles only. Once all the tests and sample programs have
been migrated to use handles, the implementation will be simplified
and made more robust with support for handles only.
Add missing compilation guards that broke the build if either GCM or
CCM was not defined.
Add missing guards on test cases that require GCM or CBC.
The build and tests now pass for any subset of {MBEDTLS_CCM_C,
MBEDTLS_GCM_C}. There are still unused variables warnings if neither
is defined.
Allow use of persistent keys, including configuring them, importing and
exporting them, and destroying them.
When getting a slot using psa_get_key_slot, there are 3 scenarios that
can occur if the keys lifetime is persistent:
1. Key type is PSA_KEY_TYPE_NONE, no persistent storage entry:
- The key slot is treated as a standard empty key slot
2. Key type is PSA_KEY_TYPE_NONE, persistent storage entry exists:
- Attempt to load the key from persistent storage
3. Key type is not PSA_KEY_TYPE_NONE:
- As checking persistent storage on every use of the key could
be expensive, the persistent key is assumed to be saved in
persistent storage, the in-memory key is continued to be used.
There was no test case of ECDH with anything other than
PSA_ALG_SELECT_RAW. Exercise the code path from ECDH through a
"proper" KDF.
ECDH shared secret copied from an existing test, HKDF output
calculated with Cryptodome.
In ECDH key agreement, allow a public key with the OID id-ECDH, not
just a public key with the OID id-ecPublicKey.
Public keys with the OID id-ECDH are not permitted by psa_import_key,
at least for now. There would be no way to use the key for a key
agreement operation anyway in the current API.
Add test cases that do key agreement with raw selection in pieces, to
validate that selection works even when the application doesn't read
everything in one chunk.
A key selection algorithm is similar to a key derivation algorithm in
that it takes a secret input and produces a secret output stream.
However, unlike key derivation algorithms, there is no expectation
that the input cannot be reconstructed from the output. Key selection
algorithms are exclusively meant to be used on the output of a key
agreement algorithm to select chunks of the shared secret.
On key import and key generation, for RSA, reject key sizes that are
not a multiple of 8. Such keys are not well-supported in Mbed TLS and
are hardly ever used in practice.
The previous commit removed support for non-byte-aligned keys at the
PSA level. This commit actively rejects such keys and adds
corresponding tests (test keys generated with "openssl genrsa").
Simplify the test case "PSA export a slot after a failed import of an
EC keypair": use an invalid private value for the specified curve. Now
the dependencies match the test data, so this fixes curves.pl.
Update some test data from the asymmetric_apis_coverage branch that
wasn't updated to the new format from the
psa-asymmetric-format-raw_private_key branch.
1. New test for testing bad order of hash function calls.
2. Removed test hash_update_bad_paths since it's test scenario
was moved to the new test.
3. Moved some scenarios from test hash_verify_bad_paths to
the new test.
1. Rename hash_bad_paths to hash_verify_bad_paths
2. Add test hash_update_bad_paths
3. Add test hash_finish_bad_paths
The different scenarios tested as part of hash_bad_paths are
moved to the relevant test.
streamline the API for the test test_derive_invalid_generator_state: by removing
the key_data parameter.
This parameter is not important for test flow and can be hard-coded.
Add boundary test cases for private key validity for a short
Weierstrass curve (0 < d < n).
Remove obsolete test cases "valid key but wrong curve". With the new
format, the private key representation does not contain an encoding of
the curve.
In preparation for the import/export format change for private
elliptic curve keys from RFC 5915 to the raw secret value, transform the
test data to the new format.
Tests will not pass until the implementation has been changed to the
new format and some test cases and test functions have been adjusted.
I used the script below to look for lines containing a
PSA_KEY_TYPE_ECC_KEYPAIR and change the first hex string in the
line with an ASN.1 header that looks like the beginning of an RFC 5915
ECPrivateKey. This always happens to be a private key input.
perl -a -F: -i -pe 'sub pad { local ($_) = @_; s/^00// if length == $digits + 2; die if length > $digits; sprintf("\"%0${digits}s\"", $_) } if ($F[0] !~ /\W/ && /:PSA_KEY_TYPE_ECC_KEYPAIR\( *PSA_ECC_CURVE_[A-Z_]+([0-9]+)/) {$digits = int(($1+7)/8)*2; s/"30(?:[0-7].|81..|82....)02010104(..)([0-9a-f]+)"/pad(substr($2, 0, hex($1)*2))/ie}' tests/suites/test_suite_psa_crypto.data
In the test function for export_public_key, don't just check the
length of the result. Compare the actual result to the expected
result.
Take an extra argument that allows using an export buffer that's
larger or smaller than needed. Zero is the size given by
PSA_KEY_EXPORT_MAX_SIZE.
Don't check the output of psa_get_key_information. That's useful in
import_export because it tests both import and export, but not in
import_export_public_key whose goal is only to test public key export.
This commit adjusts the existing test data but does not add new test
cases.
Key derivation test now uses an indirect way to test generator validity
as the direct way previously used isn't compatible with the PSA IPC
implementation. Additional bad path test for the generator added
to check basic bad-path scenarios.