Extract the list of available components by looking for definitions of
functions called component_xxx. The previous code explicitly listed
all components in run_all_components, which opened the risk of
forgetting to list a component there.
Add a conditional execution facility: if a function support_xxx exists
and returns false then component_xxx is not executed (except when the
command line lists an explicit set of components to execute).
Update the crypto submodule to include the PR#229 'storage: Correct typo of
PSA_PS_ERROR_OFFSET' which has a corresponding fix in Mbed OS 5.11, and is
required for Mbed OS to build.
Return the error code if failed, instead of returning value `1`.
If not failed, return the call of the underlying function,
in `mbedtls_ecdsa_genkey()`.
MAKEFLAGS was set to -j if it was already set, instead of being set if
not previously set as intended. So now all.sh will do parallel builds
if invoked without MAKEFLAGS in the environment.
Don't bail out of all.sh if the OS isn't Linux. We only expect
everything to pass on a recent Linux x86_64, but it's useful to call
all.sh to run some components on any platform.
In all.sh, always run both MemorySanitizer and Valgrind. Valgrind is
slower than ASan and MSan but finds some things that they don't.
Run MSan unconditionally, not just on Linux/x86_64. MSan is supported
on some other OSes and CPUs these days.
Use `all.sh --except test_memsan` if you want to omit MSan because it
isn't supported on your platform. Use `all.sh --except test_memcheck`
if you want to omit Valgrind because it's too slow.
Make the test scripts more portable (tested on FreeBSD): don't insist
on GNU sed, and recognize amd64 as well as x86_64 for `uname -m`. The
`make` utility must still be GNU make.
Call `set disable-randomization off` only if it seems to be supported.
The goal is to neither get an error about disable-randomization not
being supported (e.g. on FreeBSD), nor get an error if it is supported
but fails (e.g. on Ubuntu).
Only fiddle with disable-randomization from all.sh, which cares
because it reports the failure of ASLR disabling as an error. If a
developer invokes the Gdb script manually, a warning about ASLR
doesn't matter.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
MAKEFLAGS was set to -j if it was already set, instead of being set if
not previously set as intended. So now all.sh will do parallel builds
if invoked without MAKEFLAGS in the environment.
Don't bail out of all.sh if the OS isn't Linux. We only expect
everything to pass on a recent Linux x86_64, but it's useful to call
all.sh to run some components on any platform.
In all.sh, always run both MemorySanitizer and Valgrind. Valgrind is
slower than ASan and MSan but finds some things that they don't.
Run MSan unconditionally, not just on Linux/x86_64. MSan is supported
on some other OSes and CPUs these days.
Use `all.sh --except test_memsan` if you want to omit MSan because it
isn't supported on your platform. Use `all.sh --except test_memcheck`
if you want to omit Valgrind because it's too slow.
Make the test scripts more portable (tested on FreeBSD): don't insist
on GNU sed, and recognize amd64 as well as x86_64 for `uname -m`. The
`make` utility must still be GNU make.
Call `set disable-randomization off` only if it seems to be supported.
The goal is to neither get an error about disable-randomization not
being supported (e.g. on FreeBSD), nor get an error if it is supported
but fails (e.g. on Ubuntu).
Only fiddle with disable-randomization from all.sh, which cares
because it reports the failure of ASLR disabling as an error. If a
developer invokes the Gdb script manually, a warning about ASLR
doesn't matter.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
fixed processing of PSA macros in check names script.
This required changes in:
*list-macros.sh to scan the PSA headers
*check-names to scan PSA files and allow PSA_* macro names
We've added documentation for how context objects for multi-part
operations must be initialized consistently for key policy, hash,
cipher, and MAC. Update the generator documentation to be consistent
with how we've documented the other operations.
Add new initializers for cipher operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
The struct psa_cipher_operation_s is built with a
mbedtls_cipher_context_t. The shape of mbedtls_cipher_context_t and an
initializer that works with Clang 5.0 and its
-Wmissing-field-initializers varies based on the configuration of the
library. Instead of making multiple initializers based on a maze of
ifdefs for all combinations of MBEDTLS_CIPHER_MODE_WITH_PADDING,
MBEDTLS_CMAC_C, and MBEDTLS_USE_PSA_CRYPTO, add a dummy variable to
psa_cipher_operation_s's union that encloses mbedtls_cipher_context_t.
This allows us to initialize the dummy with a Clang-approved initializer
and have it properly initialize the entire object.
Add new initializers for MAC operation objects and use them in our tests
and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for hash operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for key policies and use them in our docs, example
programs, tests, and library code. Prefer using the macro initializers
due to their straightforwardness.
As there are some definitions that are defined regardless of
whether MBEDTLS_ECP_RESTARTABLE is defined or not, these definitions
need to be moved outside the MBEDTLS_ECP_ALT guards. This is a simple
move as MBEDTLS_ECP_ALT and MBEDTLS_ECP_RESTARTABLE are mutually
exclusive options.
Merge the work on all.sh that was done on mbedtls-2.14.0 with the
changes from mbedtls-2.14.0 to the current tip of mbed-crypto/development.
There is a merge conflict in test/scripts/all.sh, which is the only
file that was modified in the all.sh work branch. I resolved it by
taking the copy from the all.sh branch and applying the changes
between mbedtls-2.14.0 and mbedtls-2.16.0. As evidenced by
`git diff mbedtls-2.14.0 d668baebc5e1709f4118aba3802d9af0ee4e4d83`,
many of the commits in
`git log mbedtls-2.14.0 d668baebc5e1709f4118aba3802d9af0ee4e4d83`
cancelled each other or were redundant with parallel commits that had
also occured via another branch included in mbedtls-2.14.0, leaving
the following differences:
* Removal of one unimportant blank line.
* The changes from db2b8db715
"psa: Add storage implementation for files", to turn off
PSA storage when MBEDTLS_FS_IO is turned off, which I manually
replayed.
mbedtls_mpi_read_binary() calls memcpy() with the source pointer being
the source pointer passed to mbedtls_mpi_read_binary(), the latter may
be NULL if the buffer length is 0 (and this happens e.g. in the ECJPAKE
test suite). The behavior of memcpy(), in contrast, is undefined when
called with NULL source buffer, even if the length of the copy operation
is 0.
This commit fixes this by explicitly checking that the source pointer is
not NULL before calling memcpy(), and skipping the call otherwise.
Merge the work on all.sh that was done on mbedtls-2.14.0 with the
changes from mbedtls-2.14.0 to mbedtls-2.16.0.
There is a merge conflict in test/scripts/all.sh, which is the only
file that was modified in the all.sh work branch. I resolved it by
taking the copy from the all.sh branch and applying the changes
between mbedtls-2.14.0 and mbedtls-2.16.0. These changes consisted of
two commits:
* "Add tests to all.sh for CHECK_PARAMS edge cases": adds two
test components which are reproduced here as
test_check_params_without_platform and component_test_check_params_silent.
* "tests: Backup config.h before modifying it": moot because the
component framework introduced in the all.sh branch backs up config.h
systematically.
In all.sh, always save config.h before running a component, instead of
doing it manually in each component that requires it (except when we
forget, which has happened). This would break a script that requires
config.h.bak not to exist, but we don't have any of those.
In all.sh, always save config.h before running a component, instead of
doing it manually in each component that requires it (except when we
forget, which has happened). This would break a script that requires
config.h.bak not to exist, but we don't have any of those.