Call persistence "default" because that is genuinely the default that
applications should use if they don't know better. It's slightly
misleading in that the default persistence when you create a key is
volatile, not this: "default" is the default persistence for
persistent keys, not the default persistence for keys in general. But
we haven't found a better name.
Introduce the term "primary local storage" to designate the default
storage location.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Most of the documentation and some of the function names use
"asymmetric", so use "asymmetric" everywhere. Mention "public-key" in
key places to make the relevant functions easy to find if someone is
looking for that.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Change the encoding of key types, EC curve families and DH group
families to make the low-order bit a parity bit (with even parity).
This ensures that distinct key type values always have a Hamming
distance of at least 2, which makes it easier for implementations to
resist single bit flips.
All key types now have an encoding on 32 bits where the bottom 16 bits
are zero. Change to using 16 bits only.
Keep 32 bits for key types in storage, but move the significant
half-word from the top to the bottom.
Likewise, change EC curve and DH group families from 32 bits out of
which the top 8 and bottom 16 bits are zero, to 8 bits only.
Reorder psa_core_key_attributes_t to avoid padding.
Define constants for ECC curve families and DH group families. These
constants have 0x0000 in the lower 16 bits of the key type.
Support these constants in the implementation and in the PSA metadata
tests.
Switch the slot management and secure element driver HAL tests to the
new curve encodings. This requires SE driver code to become slightly
more clever when figuring out the bit-size of an imported EC key since
it now needs to take the data size into account.
Switch some documentation to the new encodings.
Remove the macro PSA_ECC_CURVE_BITS which can no longer be implemented.
Change the representation of psa_ecc_curve_t and psa_dh_group_t from
the IETF 16-bit encoding to a custom 24-bit encoding where the upper 8
bits represent a curve family and the lower 16 bits are the key size
in bits. Families are based on naming and mathematical similarity,
with sufficiently precise families that no two curves in a family have
the same bit size (for example SECP-R1 and SECP-R2 are two different
families).
As a consequence, the lower 16 bits of a key type value are always
either the key size or 0.
Key types are now encoded through a category in the upper 4 bits (bits
28-31) and a type-within-category in the next 11 bits (bits 17-27),
with bit 16 unused and bits 0-15 only used for the EC curve or DH
group.
For symmetric keys, bits 20-22 encode the block size (0x0=stream,
0x3=8B, 0x4=16B).
Change the numerical encoding of values for symmetric key types to
have 0000 as the lower 16 bits. Now the lower 16 bits are only used
for key types that have a subtype (EC curve or DH group).
Rename some macros and functions related to signature which are
changing as part of the addition of psa_sign_message and
psa_verify_message.
perl -i -pe '%t = (
PSA_KEY_USAGE_SIGN => PSA_KEY_USAGE_SIGN_HASH,
PSA_KEY_USAGE_VERIFY => PSA_KEY_USAGE_VERIFY_HASH,
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE => PSA_SIGNATURE_MAX_SIZE,
PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE => PSA_SIGN_OUTPUT_SIZE,
psa_asymmetric_sign => psa_sign_hash,
psa_asymmetric_verify => psa_verify_hash,
); s/\b(@{[join("|", keys %t)]})\b/$t{$1}/ge' $(git ls-files . ':!:**/crypto_compat.h')
Define a vendor-range within the the private use ranges in the IANA
registry. Provide recommendations for how to support vendor-defined
curves and groups.
If none of the inputs to a key derivation is a
PSA_KEY_DERIVATION_INPUT_SECRET passed with
psa_key_derivation_input_key(), forbid
psa_key_derivation_output_key(). It usually doesn't make sense to
derive a key object if the secret isn't itself a proper key.
Allow a direct input as the SECRET input step in a key derivation, in
addition to allowing DERIVE keys. This makes it easier for
applications to run a key derivation where the "secret" input is
obtained from somewhere else. This makes it possible for the "secret"
input to be empty (keys cannot be empty), which some protocols do (for
example the IV derivation in EAP-TLS).
Conversely, allow a RAW_DATA key as the INFO/LABEL/SALT/SEED input to a key
derivation, in addition to allowing direct inputs. This doesn't
improve security, but removes a step when a personalization parameter
is stored in the key store, and allows this personalization parameter
to remain opaque.
Add test cases that explore step/key-type-and-keyhood combinations.
Avoid compiler errors when MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER
is set by using the application ID type.
[Error] psa_crypto_slot_management.c@175,9: used type 'psa_key_id_t' (aka 'psa_key_file_id_t') where arithmetic or pointer type is required
From the implementation point of view does not make much difference to
constrain the input order.
We constrain it because, this way the code is easier to review, the data
flow easier to understand and the implementations in general are easier
to validate.
Convert the description of PSA_ALG_TLS12_PRF and
PSA_ALG_TLS12_PSK_TO_MS to the key derivation API that takes one input
at a time rather than the old {secret,salt,label} interface.
Define a new input category "seed".
“Tampering detected” was misleading because in the real world it can
also arise due to a software bug. “Corruption detected” is neutral and
more precisely reflects what can trigger the error.
perl -i -pe 's/PSA_ERROR_TAMPERING_DETECTED/PSA_ERROR_CORRUPTION_DETECTED/gi' $(git ls-files)
Move DSA-related key types and algorithms to the
implementation-specific header file. Not that we actually implement
DSA, but with domain parameters, we should be able to.
Parametrize finite-field Diffie-Hellman key types with a DH group
identifier, in the same way elliptic curve keys are parametrized with
an EC curve identifier.
Define the DH groups from the TLS registry (these are the groups from
RFC 7919).
Replicate the macro definitions and the metadata tests from elliptic
curve identifiers to DH group identifiers.
Define PSA_DH_GROUP_CUSTOM as an implementation-specific extension for
which domain parameters are used to specify the group.
Define a range of key identifiers for use by the application
(0..2^30-1), a range for use by implementations (2^30..2^31), and a
range that is reserved for future use (2^31..2^32-1).
Declare algorithms for ChaCha20 and ChaCha20-Poly1305, and a
corresponding (common) key type.
Don't declare Poly1305 as a separate algorithm because it's a one-time
authenticator, not a MAC, so the API isn't suitable for it (no way to
use a nonce).
This gives a little more room to encode key agreement algorithms,
while keeping enough space for key derivation algorithms.
This doesn't affect any of the already-defined algorithms.
Merge the Mbed Crypto development branch a little after
mbedcrypto-1.0.0 into the PSA Crypto API 1.0 beta branch a little
after beta 2.
Summary of merge conflicts:
* Some features (psa_copy_key, public key format without
SubjectPublicKeyInfo wrapping) went into both sides, but with a few
improvements on the implementation side. For those, take the
implementation side.
* The key derivation API changed considerably on the API side. This
merge commit generally goes with the updated API except in the tests
where it keeps some aspects of the implementation.
Due to the divergence between the two branches on key derivation and
key agreement, test_suite_psa_crypto does not compile. This will be
resolved in subsequent commits.
New function psa_copy_key().
Conflicts:
* library/psa_crypto.c: trivial conflicts due to consecutive changes.
* tests/suites/test_suite_psa_crypto.data: the same code
was added on both sides, but with a conflict resolution on one side.
* tests/suites/test_suite_psa_crypto_metadata.function: the same code
was added on both sides, but with a conflict resolution on one side.
You can use PSA_ALG_ANY_HASH to build the algorithm value for a
hash-and-sign algorithm in a policy. Then the policy allows usage with
this hash-and-sign family with any hash.
Test that PSA_ALG_ANY_HASH-based policies allow a specific hash, but
not a different hash-and-sign family. Test that PSA_ALG_ANY_HASH is
not valid for operations, only in policies.
Test for a subclass of public-key algorithm: those that perform
full-domain hashing, i.e. algorithms that can be broken down as
sign(key, hash(message)).
Change the key derivation API to take inputs in multiple steps,
instead of a single one-site-fits-poorly function.
Conflicts:
* include/psa/crypto.h: merge independent changes in the documentation
of psa_key_agreement (public_key from the work on public key formats
vs general description and other parameters in the work on key derivation).
* tests/suites/test_suite_psa_crypto.data: update the key agreement
tests from the work on key derivation to the format from the work on
public key formats.
* tests/suites/test_suite_psa_crypto_metadata.function: reconcile the
addition of unrelated ALG_IS_xxx macros
Get rid of "key selection" algorithms (of which there was only one:
raw key selection).
Encode key agreement by combining a raw key agreement with a KDF,
rather than passing the KDF as an argument of a key agreement macro.
It isn't a good fit. It's overly complex for what the API can do now,
which is Diffie-Hellman. Consider it again later for more complex use
cases such as authenticated key exchanges.
Use separate step types for a KDF secret and for the private key in a
key agreement.
Determine which key type is allowed from the step type, independently
of the KDF.
Forbid raw inputs for certain steps. They definitely should be
forbidden for asymmetric keys, which are structured. Also forbid them
for KDF secrets: the secrets are supposed to be keys, even if they're
unstructured.
Add the ability to specify Diffie-Hellman key exchange keys. Specify the
import/export format as well, even though importing and exporting isn't
implemented yet.
You can use PSA_ALG_ANY_HASH to build the algorithm value for a
hash-and-sign algorithm in a policy. Then the policy allows usage with
this hash-and-sign family with any hash.
Test that PSA_ALG_ANY_HASH-based policies allow a specific hash, but
not a different hash-and-sign family. Test that PSA_ALG_ANY_HASH is
not valid for operations, only in policies.
Test for a subclass of public-key algorithm: those that perform
full-domain hashing, i.e. algorithms that can be broken down as
sign(key, hash(message)).
Some parts of the library, and crypto drivers, need to see key types,
algorithms, policies, etc. but not API functions. Move portable
integral types and macros to build and analyze values of these types
to a separate headers crypto_types.h and crypto_values.h.
No functional changes, code was only moved from crypto.h to the new headers.