Revived from a previous PR by Gilles, see:
https://github.com/ARMmbed/mbedtls/pull/1293/files#diff-568ef321d275f2035b8b26a70ee9af0bR71
This will be useful in eliminating temporary stack buffers for transcoding the
signature: in order to do that in place we need to be able to make assumptions
about the size of the output buffer, which this macro will provide. (See next
commit.)
It's better for names in the API to describe the "what" (opaque keys) rather
than the "how" (using PSA), at least since we don't intend to have multiple
function doing the same "what" in different ways in the foreseeable future.
Unfortunately the can_do wrapper does not receive the key context as an
argument, so it cannot check psa_get_key_information(). Later we might want to
change our internal structures to fix this, but for now we'll just restrict
opaque PSA keys to be ECDSA keypairs, as this is the only thing we need for
now. It also simplifies testing a bit (no need to test each key type).
While at it, clarify who's responsible for destroying the underlying key. That
can't be us because some keys cannot be destroyed and we wouldn't know. So
let's leave that up to the caller.
In case of AEAD ciphers, the cipher mode (and not even the entire content
of mbedtls_cipher_info_t) doesn't uniquely determine a psa_algorithm_t
because it doesn't specify the AEAD tag length, which however is included
in psa_algorithm_t identifiers.
This commit adds a tag length value to mbedtls_psa_translate_cipher_mode()
to account for that ambiguity.
This commit adds the header file mbedtls/psa_util.h which contains
static utility functions `mbedtls_psa_xxx()` used in the integration
of PSA Crypto into Mbed TLS.
Warning: These functions are internal only and may change at any time.
Allow use of persistent keys, including configuring them, importing and
exporting them, and destroying them.
When getting a slot using psa_get_key_slot, there are 3 scenarios that
can occur if the keys lifetime is persistent:
1. Key type is PSA_KEY_TYPE_NONE, no persistent storage entry:
- The key slot is treated as a standard empty key slot
2. Key type is PSA_KEY_TYPE_NONE, persistent storage entry exists:
- Attempt to load the key from persistent storage
3. Key type is not PSA_KEY_TYPE_NONE:
- As checking persistent storage on every use of the key could
be expensive, the persistent key is assumed to be saved in
persistent storage, the in-memory key is continued to be used.
Add new functions, psa_load_persistent_key(),
psa_free_persistent_key_data(), and psa_save_persistent_key(), for
managing persistent keys. These functions load to or save from our
internal representation of key slots. Serialization is a concern of the
storage backend implementation and doesn't abstraction-leak into the
lifetime management code.
An initial implementation for files is provided. Additional storage
backends can implement this interface for other storage types.
Mbed TLS version 2.14.0
Resolved conflicts in include/mbedtls/config.h,
tests/scripts/check-files.py, and yotta/create-module.sh by removing yotta.
Resolved conflicts in tests/.jenkins/Jenkinsfile by continuing to run
mbedtls-psa job.
Add missing checks for defined(MBEDTLS_MD_C) around types and
functions that require it (HMAC, HKDF, TLS12_PRF).
Add missing checks for defined(MBEDTLS_ECDSA_DETERMINISTIC) around
code that calls mbedtls_ecdsa_sign_det().
Add missing checks for defined(MBEDTLS_ECDH_C) around ECDH-specific
functions.
This commit adds KDF algorithm identifiers `PSA_ALG_TLS12_PRF(HASH)`
to the PSA crypto API. They represent the key derivation functions
used by TLS 1.2 for the PreMasterSecret->MasterSecret and
MasterSecret->KeyBlock conversions.
Use m for the bit size of the field order, not q which is
traditionally the field order.
Correct and clarify the private key representation format as has been
done for the private key and ECDH shared secret formats.
The endianness actually depends on the curve type.
Correct the terminology around "curve size" and "order of the curve".
I tried to find a formulation that is comprehensible to programmers
who do not know the underlying mathematics, but nonetheless correct
and precise.
Use similar terminology in other places that were using "order of the
curve" to describe the bit size associated with the curve.