This partially reverts 1989caf71c (only the changes to Makefile and
CMakeLists, the addition to scripts/config.pl is kept).
Modifying config.h in the apidoc target creates a race condition with
make -j4 all apidoc
where some parts of the library, tests or programs could be built with the
wrong config.h, resulting in all kinds of (semi-random) errors. Recent
versions of CMake mitigate this by adding a .NOTPARALLEL target to the
generated Makefile, but people would still get errors with older CMake
versions that are still in use (eg in RHEL 5), and with plain make.
An additional issue is that, by failing to use cp -p, the apidoc target was
updating the timestamp on config.h, which seems to cause further build issues.
Let's get back to the previous, safe, situation. The improved apidoc building
will be resurrected in a script in the next commit.
fixes#390fixes#391
- in x509_profile_check_pk_alg
- in x509_profile_check_md_alg
- in x509_profile_check_key
and in ssl_cli.c : unsigned char gets promoted to signed integer
In ecp_mul_comb(), if (!p_eq_g && grp->T == NULL) and then ecp_precompute_comb() fails (which can
happen due to OOM), then the new array of points T will be leaked (as it's newly allocated, but
hasn't been asigned to grp->T yet).
Symptom was a memory leak in ECDHE key exchange under low memory conditions.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function, and the location where we read the MAC, give information
about that.
A local attacker could gain information about that by observing via a
cache attack whether the bytes at the end of the record (at the location of
would-be padding) have been read during MAC verification (computation +
comparison).
Let's make sure they're always read.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function gives information about that.
Information about this length (modulo the MD/SHA block size) can be deduced
from how much MD/SHA padding (this is distinct from TLS-CBC padding) is used.
If MD/SHA padding is read from a (static) buffer, a local attacker could get
information about how much is used via a cache attack targeting that buffer.
Let's get rid of this buffer. Now the only buffer used is the internal MD/SHA
one, which is always read fully by the process() function.
Fix Documentation error in `mbedtls_ssl_get_session`.
This function supports deep copying of the session,
and the peer certificate is not lost anymore, Resolves#926