At the end of `psa_hmac_setup_internal()`, the ipad is cleared.
However, the size that was given to clear was `key_len` which is larger
than the size of `ipad`.
* crypto/development: (77 commits)
all.sh: disable MEMORY_BUFFER_ALLOC in cmake asan build
Unify gcc and clang cmake flags to test with UBsan
Add an input check in psa_its_set
Remove storage errors from psa_generate_random
Update getting_started.md
Update based on Jaeden's comments.
Update getting_started.md
Fix return code warnings
Update getting_started.md
Fix warnings
Add PSA_ERROR_STORAGE_FAILURE to psa_cipher_generate_iv
Remove errorneous insert
Add STORAGE_FAILURE everywhere + add missing codes
Add storage failure to psa_mac_verify_finish
Add storage failure to psa_mac_sign_finish
Add PSA_ERROR_STORAGE_FAILURE to psa_aead_*_setup functions
Added PSA_ERROR_BAD_STATE to functions with operations
Added extra bad state case to psa_hash_setup
Add missing return codes to psa_generate_key
Add PSA_ERROR_BUFFER_TOO_SMALL to psa_mac_compute
...
We were still reusing the internal HMAC-DRBG of the deterministic ECDSA
for blinding. This meant that with cryptographically low likelyhood the
result was not the same signature as the one the deterministic ECDSA
algorithm has to produce (however it is still a valid ECDSA signature).
To correct this we seed a second HMAC-DRBG with the same seed to restore
correct behavior. We also apply a label to avoid reusing the bits of the
ephemeral key for a different purpose and reduce the chance that they
leak.
This workaround can't be implemented in the restartable case without
penalising the case where external RNG is available or completely
defeating the purpose of the restartable feature, therefore in this case
the small chance of incorrect behavior remains.
The current interface does not allow passing an RNG, which is needed for
blinding. Using the scheme's internal HMAC-DRBG results the same
blinding values for the same key and message, diminishing the
effectiveness of the countermeasure. A new function
`mbedtls_ecdsa_det_ext` is available to address this problem.
`mbedtls_ecdsa_sign_det` reuses the internal HMAC-DRBG instance to
implement blinding. The advantage of this is that the algorithm is
deterministic too, not just the resulting signature. The drawback is
that the blinding is always the same for the same key and message.
This diminishes the efficiency of blinding and leaks information about
the private key.
A function that takes external randomness fixes this weakness.
* crypto/development: (863 commits)
crypto_platform: Fix typo
des: Reduce number of self-test iterations
Fix -O0 build for Aarch64 bignum multiplication.
Make GNUC-compatible compilers use the right mbedtls_t_udbl again on Aarch64 builds.
Add optimized bignum multiplication for Aarch64.
Enable 64-bit limbs for all Aarch64 builds.
HMAC DRBG: Split entropy-gathering requests to reduce request sizes
psa: Use application key ID where necessary
psa: Adapt set_key_id() for when owner is included
psa: Add PSA_KEY_ID_INIT
psa: Don't duplicate policy initializer
crypto_extra: Use const seed for entropy injection
getting_started: Update for PSA Crypto API 1.0b3
Editorial fixes.
Cross reference 'key handles' from INVALID_HANDLE
Update documentation for psa_destroy_key
Update documentation for psa_close_key
Update psa_open_key documentation
Remove duplicated information in psa_open_key
Initialize key bits to max size + 1 in psa_import_key
...
According to SP800-90A, the DRBG seeding process should use a nonce
of length `security_strength / 2` bits as part of the DRBG seed. It
further notes that this nonce may be drawn from the same source of
entropy that is used for the first `security_strength` bits of the
DRBG seed. The present HMAC DRBG implementation does that, requesting
`security_strength * 3 / 2` bits of entropy from the configured entropy
source in total to form the initial part of the DRBG seed.
However, some entropy sources may have thresholds in terms of how much
entropy they can provide in a single call to their entropy gathering
function which may be exceeded by the present HMAC DRBG implementation
even if the threshold is not smaller than `security_strength` bits.
Specifically, this is the case for our own entropy module implementation
which only allows requesting at most 32 Bytes of entropy at a time
in configurations disabling SHA-512, and this leads to runtime failure
of HMAC DRBG when used with Mbed Crypto' own entropy callbacks in such
configurations.
This commit fixes this by splitting the seed entropy acquisition into
two calls, one requesting `security_strength` bits first, and another
one requesting `security_strength / 2` bits for the nonce.
Fixes#237.
Avoid compiler errors when MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER
is set by using the application ID type.
[Error] psa_crypto_slot_management.c@175,9: used type 'psa_key_id_t' (aka 'psa_key_file_id_t') where arithmetic or pointer type is required
In psa_import_key, the key bits value was uninitialized before
calling the secure element driver import function. There is a
potential issue if the driver returns PSA_SUCCESS without setting
the key bits. This shouldn't happen, but shouldn't be discounted
either, so we initialize the key bits to an invalid issue.
* crypto/pr/212: (337 commits)
Make TODO comments consistent
Fix PSA tests
Fix psa_generate_random for >1024 bytes
Add tests to generate more random than MBEDTLS_CTR_DRBG_MAX_REQUEST
Fix double free in psa_generate_key when psa_generate_random fails
Fix copypasta in test data
Avoid a lowercase letter in a macro name
Correct some comments
Fix PSA init/deinit in mbedtls_xxx tests when using PSA
Make psa_calculate_key_bits return psa_key_bits_t
Adjust secure element code to the new ITS interface
More refactoring: consolidate attribute validation
Fix policy validity check on key creation.
Add test function for import with a bad policy
Test key creation with an invalid type (0 and nonzero)
Remove "allocated" flag from key slots
Take advantage of psa_core_key_attributes_t internally #2
Store the key size in the slot in memory
Take advantage of psa_core_key_attributes_t internally: key loading
Switch storage functions over to psa_core_key_attributes_t
...
Resolve conflicts by performing the following actions:
- Reject changes to ChangeLog, as Mbed Crypto doesn't have one
- Reject changes to tests/compat.sh, as Mbed Crypto doesn't have it
- Reject changes to programs/fuzz/onefile.c, as Mbed Crypto doesn't have
it
- Resolve minor whitespace differences in library/ecdsa.c by taking the
version from Mbed TLS upstream.
* origin/development:
Honor MBEDTLS_CONFIG_FILE in fuzz tests
Test that a shared library build produces a dynamically linked executable
Test that the shared library build with CMake works
Add a test of MBEDTLS_CONFIG_FILE
Exclude DTLS 1.2 only with older OpenSSL
Document the rationale for the armel build
Switch armel build to -Os
Add a build on ARMv5TE in ARM mode
Add changelog entry for ARM assembly fix
bn_mul.h: require at least ARMv6 to enable the ARM DSP code
Adapt ChangeLog
ECP restart: Don't calculate address of sub ctx if ctx is NULL
Adopt a simple method for tracking whether there was a failure: each
fallible operation sets overall_status, unless overall_status is
already non-successful. Thus in case of multiple failures, the
function always reports whatever failed first. This may not always be
the right thing, but it's simple.
This revealed a bug whereby if the only failure was the call to
psa_destroy_se_key(), i.e. if the driver reported a failure or if the
driver lacked support for destroying keys, psa_destroy_key() would
ignore that failure.
For a key in a secure element, if creating a transaction file fails,
don't touch storage, but close the key in memory. This may not be
right, but it's no wronger than it was before. Tracked in
https://github.com/ARMmbed/mbed-crypto/issues/215
When a key slot is wiped, a copy of the key material may remain in
operations. This is undesirable, but does not violate the safety of
the code. Tracked in https://github.com/ARMmbed/mbed-crypto/issues/86
The methods to import and generate a key in a secure element drivers
were written for an earlier version of the application-side interface.
Now that there is a psa_key_attributes_t structure that combines all
key metadata including its lifetime (location), type, size, policy and
extra type-specific data (domain parameters), pass that to drivers
instead of separate arguments for each piece of metadata. This makes
the interface less cluttered.
Update parameter names and descriptions to follow general conventions.
Document the public-key output on key generation more precisely.
Explain that it is optional in a driver, and when a driver would
implement it. Declare that it is optional in the core, too (which
means that a crypto core might not support drivers for secure elements
that do need this feature).
Update the implementation and the tests accordingly.
Register an existing key in a secure element.
Minimal implementation that doesn't call any driver method and just
lets the application declare whatever it wants.
Pass the key creation method (import/generate/derive/copy) to the
driver methods to allocate or validate a slot number. This allows
drivers to enforce policies such as "this key slot can only be used
for keys generated inside the secure element".
Let psa_start_key_creation know what type of key creation this is. This
will be used at least for key registration in a secure element, which
is a peculiar kind of creation since it uses existing key material.
Allow the application to choose the slot number in a secure element,
rather than always letting the driver choose.
With this commit, any application may request any slot. In an
implementation with isolation, it's up to the service to filter key
creation requests and apply policies to limit which applications can
request which slot.
This function no longer modifies anything, so it doesn't actually
allocate the slot. Now, it just returns the empty key slot, and it's
up to the caller to cause the slot to be in use (or not).
Add a slot_number field to psa_key_attributes_t and getter/setter
functions. Since slot numbers can have the value 0, indicate the
presence of the field via a separate flag.
In psa_get_key_attributes(), report the slot number if the key is in a
secure element.
When creating a key, for now, applications cannot choose a slot
number. A subsequent commit will add this capability in the secure
element HAL.
Add infrastructure for internal, external and dual-use flags, with a
compile-time check (if static_assert is available) to ensure that the
same numerical value doesn't get declared for two different purposes
in crypto_struct.h (external or dual-use) and
psa_crypto_core.h (internal).
mbedtls_ctr_drbg_random can only return up to
MBEDTLS_CTR_DRBG_MAX_REQUEST (normally 1024) bytes at a time. So if
more than that is requested, call mbedtls_ctr_drbg_random in a loop.
When psa_generate_random fails, psa_generate_key_internal frees the
key buffer but a the pointer to the now-freed buffer in the slot. Then
psa_generate_key calls psa_fail_key_creation which sees the pointer
and calls free() again.
This bug was introduced by ff5f0e7221
"Implement atomic-creation psa_{generate,generator_import}_key" which
changed how psa_generate_key() cleans up on errors. I went through the
code and could not find a similar bug in cleanup on an error during
key creation.
Fix#207