tests/Makefile had some unused warnings disabled unnecessarily, which
test-ref-configs.pl was turning back on. We don't need to disable these warnings
so I'm turning them back on.
Dependent on configured options, not all of the helper functions were being
used, which was leading to warning of unused functions with Clang.
To avoid any complex compile time options, or adding more logic to
generate_test_code.py to screen out unused functions, those functions which were
provoking the warning were changed to remove static, remove them from file
scope, and expose them to the linker.
Since the AD too long is a limitation on Mbed TLS,
HW accelerators may support this. Run the test for AD too long,
only if `MBEDTLS_CCM_ALT` is not defined.
Addresses comment in #1996.
This commit introduces variants test-ca_utf8.crt,
test-ca_printablestring.crt and test-ca_uppercase.crt
of tests/data_files/test-ca.crt which differ from
test-ca.crt in their choice of string encoding and
upper and lower case letters in the DN field. These
changes should be immaterial to the recovation check,
and three tests are added that crl.pem, which applies
to test-ca.crt, is also considered as applying to
test-ca_*.crt.
The test files were generated using PR #1641 which
- adds a build instruction for test-ca.crt to
tests/data_files/Makefile which allows easy
change of the subject DN.
- changes the default string format from `PrintableString`
to `UTF8String`.
Specifically:
- `test-ca_utf8.crt` was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641.
- `test-ca_uppercase.crt`, too, was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641, after modifying the subject DN line in the build
instruction for `test-ca.crt` in `tests/data_files/Makefile`.
- `test-ca_printable.crt` is a copy of `test-ca.crt`
because at the time of this commit, `PrintableString` is
still the default string format.
Primality tests have to deal with different distribution when generating
primes and when validating primes.
These new tests are testing if mbedtls_mpi_is_prime() is working
properly in the latter setting.
The new tests involve pseudoprimes with maximum number of
non-witnesses. The non-witnesses were generated by printing them
from mpi_miller_rabin(). The pseudoprimes were generated by the
following function:
void gen_monier( mbedtls_mpi* res, int nbits )
{
mbedtls_mpi p_2x_plus_1, p_4x_plus_1, x, tmp;
mbedtls_mpi_init( &p_2x_plus_1 );
mbedtls_mpi_init( &p_4x_plus_1 );
mbedtls_mpi_init( &x ); mbedtls_mpi_init( &tmp );
do
{
mbedtls_mpi_gen_prime( &p_2x_plus_1, nbits >> 1, 0,
rnd_std_rand, NULL );
mbedtls_mpi_sub_int( &x, &p_2x_plus_1, 1 );
mbedtls_mpi_div_int( &x, &tmp, &x, 2 );
if( mbedtls_mpi_get_bit( &x, 0 ) == 0 )
continue;
mbedtls_mpi_mul_int( &p_4x_plus_1, &x, 4 );
mbedtls_mpi_add_int( &p_4x_plus_1, &p_4x_plus_1, 1 );
if( mbedtls_mpi_is_prime( &p_4x_plus_1, rnd_std_rand,
NULL ) == 0 )
break;
} while( 1 );
mbedtls_mpi_mul_mpi( res, &p_2x_plus_1, &p_4x_plus_1 );
}
Functional tests for various payload sizes and output buffer sizes.
When the padding is bad or the plaintext is too large for the output
buffer, verify that function writes some outputs. This doesn't
validate that the implementation is time-constant, but it at least
validates that it doesn't just return early without outputting anything.
Deprecate mbedtls_ctr_drbg_update (which returns void) in favor of a
new function mbedtls_ctr_drbg_update_ret which reports error. The old
function is not officially marked as deprecated in this branch because
this is a stable maintenance branch.
Add pk_write test cases where the ASN.1 INTEGER encoding of the
private value does not have the mandatory size for the OCTET STRING
that contains the value.
ec_256_long_prv.pem is a random secp256r1 private key, selected so
that the private value is >= 2^255, i.e. the top bit of the first byte
is set (which would cause the INTEGER encoding to have an extra
leading 0 byte).
ec_521_short_prv.pem is a random secp521r1 private key, selected so
that the private value is < 2^518, i.e. the first byte is zero and the
top bit of the second byte is 0 (which would cause the INTEGER
encoding to have one less 0 byte at the start).
Address review comments:
1. add `mbedtls_cipher_init()` after freeing context, in test code
2. style comments
3. set `ctx->iv_size = 0` in case `IV == NULL && iv_len == 0`
This PR fixes multiple issues in the source code to address issues raised by
tests/scripts/check-files.py. Specifically:
* incorrect file permissions
* missing newline at the end of files
* trailing whitespace
* Tabs present
* TODOs in the souce code
The relevant ASN.1 definitions for a PKCS#8 encoded Elliptic Curve key are:
PrivateKeyInfo ::= SEQUENCE {
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privateKey PrivateKey,
attributes [0] IMPLICIT Attributes OPTIONAL
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
ECParameters ::= CHOICE {
namedCurve OBJECT IDENTIFIER
-- implicitCurve NULL
-- specifiedCurve SpecifiedECDomain
}
ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
privateKey OCTET STRING,
parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
publicKey [1] BIT STRING OPTIONAL
}
Because of the two optional fields, there are 4 possible variants that need to
be parsed: no optional fields, only parameters, only public key, and both
optional fields. Previously mbedTLS was unable to parse keys with "only
parameters". Also, only "only public key" was tested. There was a test for "no
optional fields", but it was labelled incorrectly as SEC.1 and not run because
of a great renaming mixup.
Conflict resolution:
* ChangeLog
* tests/data_files/Makefile: concurrent additions, order irrelevant
* tests/data_files/test-ca.opensslconf: concurrent additions, order irrelevant
* tests/scripts/all.sh: one comment change conflicted with a code
addition. In addition some of the additions in the
iotssl-1381-x509-verify-refactor-restricted branch need support for
keep-going mode, this will be added in a subsequent commit.
The 'critical' boolean can be set to false in two ways:
- by leaving it implicit (test data generated by openssl)
- by explicitly setting it to false (generated by hand)
This covers all lines added in the previous commit. Coverage was tested using:
make CFLAGS='--coverage -g3 -O0'
(cd tests && ./test_suite_x509parse)
make lcov
firefox Coverage/index.html # then visual check
Test data was generated by taking a copy of tests/data_files/crl-idp.pem,
encoding it as hex, and then manually changing the values of some bytes to
achieve the desired errors, using https://lapo.it/asn1js/ for help in locating
the desired bytes.
Found by running:
CC=clang cmake -D CMAKE_BUILD_TYPE="Check"
tests/scripts/depend-pkalgs.pl
(Also tested with same command but CC=gcc)
Another PR will address improving all.sh and/or the depend-xxx.pl scripts
themselves to catch this kind of thing.
Our current behaviour is a bit inconsistent here:
- when the bad signature is made by a trusted CA, we stop here and don't
include the trusted CA in the chain (don't call vrfy on it)
- otherwise, we just add NOT_TRUSTED to the flags but keep building the chain
and call vrfy on the upper certs
This ensures that the callback can actually clear that flag, and that it is
seen by the callback at the right level. This flag is not set at the same
place than others, and this difference will get bigger in the upcoming
refactor, so let's ensure we don't break anything here.
When a trusted CA is rolling its root keys, it could happen that for some
users the list of trusted roots contains two versions of the same CA with the
same name but different keys. Currently this is supported but wasn't tested.
Note: the intermediate file test-ca-alt.csr is commited on purpose, as not
commiting intermediate files causes make to regenerate files that we don't
want it to touch.
As we accept EE certs that are explicitly trusted (in the list of trusted
roots) and usually look for parent by subject, and in the future we might want
to avoid checking the self-signature on trusted certs, there could a risk that we
incorrectly accept a cert that looks like a trusted root except it doesn't
have the same key. This test ensures this will never happen.
The tests cover chains of length 0, 1 and 2, with one error, located at any of
the available levels in the chain. This exercises all three call sites of
f_vrfy (two in verify_top, one in verify_child). Chains of greater length
would not cover any new code path or behaviour that I can see.
So far there was no test ensuring that the flags passed to the vrfy callback
are correct (ie the flags for the current certificate, not including those of
the parent).
Actual tests case making use of that test function will be added in the next
commit.
We have code to skip them but didn't have explicit tests ensuring they are
(the corresponding branch was never taken).
While at it, remove extra copy of the chain in server10*.crt, which was
duplicated for no reason.
This shows inconsistencies in how flags are handled when callback fails:
- sometimes the flags set by the callback are transmitted, sometimes not
- when the cert if not trusted, sometimes BADCERT_NOT_TRUSTED is set,
sometimes not
This adds coverage for 9 lines and 9 branches. Now all lines related to
callback failure are covered.
Now all checks related to profile are covered in:
- verify_with_profile()
- verify_child()
- verify_top()
(that's 10 lines that were previously not covered)
Leaving aside profile enforcement in CRLs for now, as the focus is on
preparing to refactor cert verification.
Previously flags was left to whatever value it had before. It's cleaner to
make sure it has a definite value, and all bits set looks like the safest way
for when it went very wrong.
Extend the pkparse test suite with the newly created keys
encrypted using PKCS#8 with PKCS#5 v2.0 with PRF being
SHA224, 256, 384 and 512.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
Some unit tests for pbkdf2_hmac() have results longer than
99bytes when represented in hexadecimal form.
For this reason extend the result array to accommodate
longer strings.
At the same time make memset() parametric to avoid
bugs in the future.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
Test vectors for SHA224,256,384 and 512 have been
generated using Python's hashlib module by the
following oneliner:
import binascii, hashlib
binascii.hexlify(hashlib.pbkdf2_hmac(ALGO, binascii.unhexlify('PASSWORD'), binascii.unhexlify('SALT'), ITER, KEYLEN)))
where ALGO was 'sha224', 'sha256', 'sha384' and 'sha512'
respectively.
Values for PASSWORD, SALT, ITER and KEYLEN were copied from the
existent test vectors for SHA1.
For SHA256 we also have two test vectors coming from RFC7914 Sec 11.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>