mbedtls_timing_get_timer with reset=1 is called both to initialize a
timer object and to reset an already-initialized object. In an
initial call, the content of the data structure is indeterminate, so
the code should not read from it. This could crash if signed overflows
trap, for example.
As a consequence, on reset, we can't return the previously elapsed
time as was previously done on Windows. Return 0 as was done on Unix.
The POSIX/Unix implementation of mbedtls_set_alarm did not set the
mbedtls_timing_alarmed flag when called with 0, which was inconsistent
with what the documentation implied and with the Windows behavior.
Add --keep-going mode to all.sh. In this mode, if a test fails, keep
running the subsequent tests. If a build fails, skip any tests of this
build and move on to the next tests. Errors in infrastructure, such as
git or cmake runs, remain fatal. Print an error summary at the end of
the run, and return a nonzero code if there was any failure.
In known terminal types, use color to highlight errors.
On a fatal signal, interrupt the run and report the errors so far.
Port wait_server_start from ssl-opt.sh to compat.sh, instead of just
using "sleep 1". This solves the problem that on a heavily loaded
machine, sleep 1 is sometimes not enough (we had CI failures because
of this). This is also faster on a lightly-loaded machine (execution
time reduced from ~8min to ~6min on my machine).
In wait_server_start, fork less. When lsof is present, call it on the
expected process. This saves a few percent of execution time on a
lightly loaded machine. Also, sleep for a short duration rather than
using a tight loop.
* restricted/pr/412:
Correct record header size in case of TLS
Don't allocate space for DTLS header if DTLS is disabled
Improve debugging output
Adapt ChangeLog
Add run-time check for handshake message size in ssl_write_record
Add run-time check for record content size in ssl_encrypt_buf
Add compile-time checks for size of record content and payload
In a previous PR (Fix heap corruption in implementation of truncated HMAC
extension #425) the place where MAC is computed was changed from the end of
the SSL I/O buffer to a local buffer (then (part of) the content of the local
buffer is either copied to the output buffer of compare to the input buffer).
Unfortunately, this change was made only for TLS 1.0 and later, leaving SSL
3.0 in an inconsistent state due to ssl_mac() still writing to the old,
hard-coded location, which, for MAC verification, resulted in later comparing
the end of the input buffer (containing the computed MAC) to the local buffer
(uninitialised), most likely resulting in MAC verification failure, hence no
interop (even with ourselves).
This commit completes the move to using a local buffer by using this strategy
for SSL 3.0 too. Fortunately ssl_mac() was static so it's not a problem to
change its signature.
The previous commit reduced the internal header size to 5 bytes in case of
TLS. This is not a valid since in that situation Mbed TLS internally uses the
first 8 bytes of the message buffer for the implicit record sequence number.
Fix the x509_get_subject_alt_name() function to not accept invalid
tags. The problem was that the ASN.1 class for tags consists of two
bits. Simply doing bit-wise and of the CONTEXT_SPECIFIC macro with the
input tag has the potential of accepting tag values 0x10 (private)
which would indicate that the certificate has an incorrect format.
In case truncated HMAC must be used but the Mbed TLS peer hasn't been updated
yet, one can use the compile-time option MBEDTLS_SSL_TRUNCATED_HMAC_COMPAT to
temporarily fall back to the old, non-compliant implementation of the truncated
HMAC extension.
Add a DTLS small packet test for each of the following combinations:
- DTLS version: 1.0 or 1.2
- Encrypt then MAC extension enabled
- Truncated HMAC extension enabled
Large packets tests for DTLS are currently not possible due to parameter
constraints in ssl_server2.
This commit ensures that there is a small packet test for at least any
combination of
- SSL/TLS version: SSLv3, TLS 1.0, TLS 1.1 or TLS 1.2
- Stream cipher (RC4) or Block cipher (AES)
- Usage of Encrypt then MAC extension [TLS only]
- Usage of truncated HMAC extension [TLS only]