This commit marks the beginning of the removal of support for direct
access to key slots. From this commit on, programs that use
psa_key_slot_t will no longer compile.
Subsequent commits will remove the now-unused legacy support in
psa_crypto.c.
Switch from the direct use of slot numbers to handles allocated by
psa_allocate_key.
The general principle for each function is:
* Change `psa_key_slot_t slot` to `psa_key_handle_t handle` or
`psa_key_id_t key_id` depending on whether it's used as a handle to
an open slot or as a persistent name for a key.
* Call psa_create_key() before using a slot, instead of calling
psa_set_key_lifetime to make a slot persistent.
Remove the unit test persistent_key_is_configurable which is no longer
relevant.
The code only worked if psa_key_id_t (formerly psa_key_slot_t)
promoted to int and every value fit in int. Now the code only assumes
that psa_key_id_t is less wide than unsigned long, which is the case
since psa_key_id_t is a 32-bit type in our implementation.
Move the persistent storage implementation from psa_key_slot_t to
psa_key_id_t. For the most part, this just means changing the types of
function arguments.
Update the documentation of some functions to reflect the fact that
the slot identifier is purely a storage identifier and is not related
to how the slot is designated in memory.
Switch from the direct use of slot numbers to handles allocated by
psa_allocate_key.
This commit does not affect persistent key tests except for the one
test function in test_suite_psa_crypto that uses persistent keys
(persistent_key_load_key_from_storage).
The general principle for each function is:
* Change `psa_key_slot_t slot` to `psa_key_handle_t handle`.
* Call psa_allocate_key() before setting the policy of the slot,
or before creating key material in functions that don't set a policy.
* Some PSA_ERROR_EMPTY_SLOT errors become PSA_ERROR_INVALID_HANDLE
because there is now a distinction between not having a valid
handle, and having a valid handle to a slot that doesn't contain key
material.
* In tests that use symmetric keys, calculate the max_bits parameters
of psa_allocate_key() from the key data size. In tests where the key
may be asymmetric, call an auxiliary macro KEY_BITS_FROM_DATA which
returns an overapproximation. There's no good way to find a good
value for max_bits with the API, I think the API should be tweaked.
Many places in the code called psa_remove_key_data_from_memory (which
preserves metadata for the sake of failues in psa_import_key) followed
by clearing the slot data. Use an auxiliary function for this.
Access the slot directly rather than going through psa_get_key_slot.
Unlike other places where key slots are accessed through
psa_get_key_slot, here, we know where all the slots are and there are
no policy or permission considerations.
This resolves a memory leak: allocated slots were not getting freed
because psa_get_key_slot rejected the attempt of accessing them
directly rather than via a handle.
Implement psa_allocate_key, psa_open_key, psa_create_key,
psa_close_key.
Add support for keys designated to handles to psa_get_key_slot, and
thereby to the whole API.
Allocated and non-allocated keys can coexist. This is a temporary
stage in order to transition from the use of direct slot numbers to
allocated handles only. Once all the tests and sample programs have
been migrated to use handles, the implementation will be simplified
and made more robust with support for handles only.
At the moment, the in-storage slot identifier is the in-memory slot
number. But track them separately, to prepare for API changes that
will let them be different (psa_open_key, psa_create_key).
Replace `psa_key_slot_t key` by `psa_key_handle_t` in function
declarations.
This is a transition period during which handles are key slot numbers
and the whole library can still be used by accessing a key slot number
without allocating a handle.
Function calls to alternative implementations have to follow certain
rules in order to preserve correct functionality. To avoid accidentally
breaking these rules we state them explicitly in the ECP module for
ourselves and every contributor to see.
We've changed the behavior of "-v" to no longer output test summary
statuses. Update basic-build-test.sh to use the test runner's verbosity
option "-v 2", so that the basic-build-test.sh script can get the summary
statuses it needs.
We initialized the ECC hardware before calling
mbedtls_ecp_mul_shortcuts(). This in turn calls
mbedtls_ecp_mul_restartable(), which initializes and frees the hardware
too. This issue has been introduced by recent changes and caused some
accelerators to hang.
We move the initialization after the mbedtle_ecp_mul_shortcuts() calls
to avoid double initialization.
The tests for the ECDH key exchange that use the context accessed it
directly. This can't work with the new context, where we can't make any
assumptions about the implementation of the context. This commit works
around this problem and comes with the cost of allocating an extra
structures on the stack when executing the test.
One of the tests is testing an older interface for the sake of backward
compatibility. The new ECDH context is not backward compatible and this
test doesn't make any sense for it, therefore we skip this test in
non-legacy mode.
The SSL module accesses ECDH context members directly. This can't work
with the new context, where we can't make any assumption about the
implementation of the context.
This commit makes use of the new functions to avoid accessing ECDH
members directly. The only members that are still accessed directly are
the group ID and the point format and they are independent from the
implementation.
The SSL module accesses ECDH context members directly to print debug
information. This can't work with the new context, where we can't make
assumptions about the implementation of the context. This commit adds
new debug functions to complete the encapsulation of the ECDH context
and work around the problem.
The functionality from public API functions are moved to
`xxx_internal()` functions. The public API functions are modified to do
basic parameter validation and dispatch the call to the right
implementation.
There is no intended change in behaviour when
`MBEDTLS_ECDH_LEGACY_CONTEXT` is enabled.