This commit adds a flag to the RSA import/export tests indicating whether it is
expected that a full RSA keypair can be set up from the provided parameters.
Further, the tests of `mbedtls_rsa_import` and `mbedtls_rsa_import_raw` are
expanded to perform key checks and an example encryption-decryption.
A bug in the dhm_check_range() function makes it pass even when the
parameters are not in the range. This commit adds tests for signalling
this problem as well as a couple of other negative tests.
This commit renames the test-only flag MBEDTLS_ENTROPY_HAVE_STRONG to ENTROPY_HAVE_STRONG to make it more transparent
that it's an internal flag, and also to content the testscript tests/scripts/check-names.pl which previously complained
about the macro occurring in a comment in `entropy.c` without being defined in a library file.
Previously, 2048-bit and 4096-bit RSA key files had their bitsize indicated in their filename, while the original
1024-bit keys hadn't. This commit unifies the naming scheme by always indicating the bitsize in the filename.
For uniformity, this commit adds tests for DER encoded, SHA1-2DES and SHA1-RC4-128-encrypted RSA keys; for SHA1-3DES encrypted keys, these were already present.
This commit adds test for the new library function mbedtls_rsa_check_params for
checking a set of RSA core parameters. There are some toy example tests with
small numbers that can be verified by hand, as well as tests with real world
numbers. Complete, partial and corrupted data are tested, as well the check for
primality exactly if a PRNG is provided.
This commit adds tests for the new library function mbedtls_rsa_export_raw.
Each test case performs the following steps:
- Parse and convert a set of hex-string decoded core RSA parameters into big
endian byte arrays.
- Use these to initialize an RSA context
- Export core RSA parameters as byte arrays again afterwards
- Compare byte strings.
Each test split is performed twice, once with successive and once with
simultaneous exporting.
This commit adds tests for the new library function mbedtls_rsa_export. Each
test case performs the following steps:
- Parse and convert a set of hex-string decoded core RSA parameters into MPI's.
- Use these to initialize an RSA context
- Export core RSA parameters as MPI's again afterwards
- Compare initial MPI's to exported ones.
In the private key case, all core parameters are exported and sanity-checked,
regardless of whether they were also used during setup.
Each test split is performed twice, once with successive and once with
simultaneous exporting.
This commit adds numerous tests for the new library functions mbedtls_rsa_import
and mbedtls_rsa_import_raw in conjunction with mbedtls_rsa_complete for
importing and completing core sets of core RSA parameters (N,P,Q,D,E) into an
RSA context, with the importing accepting either MPI's or raw big endian
buffers.
Each test is determined by the following parameters:
1) Set of parameters provided
We're testing full sets (N,P,Q,D,E), partial sets (N,-,-,D,E) and (N,P,Q,-,E)
that are sufficient to generate missing parameters, and the partial and
insufficient set (N, -, Q, -, E).
2) Simultaenous or successive importing
The functions rsa_import and rsa_import_raw accept importing parameters at
once or one after another. We test both.
3) Sanity of parameters
This commit adds test for the new library function mbedtls_rsa_deduce_moduli for
deducing the prime factors (P,Q) of an RSA modulus N from knowledge of a
pair (D,E) of public and private exponent:
- Two toy examples that can be checked by hand, one fine and with bad parameters.
- Two real world examples, one fine and one with bad parameters.
This commit adds tests for the new library function mbedtls_rsa_deduce_private
for deducing the private RSA exponent D from the public exponent E and the
factorization (P,Q) of the RSA modulus:
- Two toy examples with small numbers that can be checked by hand, one
working fine and another failing due to bad parameters.
- Two real world examples, one fine and one with bad parameters.
The X509 test suite assumes that MBEDTLS_X509_MAX_INTERMEDIATE_CA is below the
hardcoded threshold 20 used in the long certificate chain generating script
tests/data_files/dir-max/long.sh. This commit adds a compile-time check for
that.
The RSA key generation test needs strong entropy to succeed. This commit captures the presence of a strong entropy
source in a preprocessor flag and only runs the key generation test if that flag is set.
The function `mbedtls_rsa_gen_key` from `test_suite_rsa.function` initialized a stack allocated RSA context only after
seeding the CTR DRBG. If the latter operation failed, the cleanup code tried to free the uninitialized RSA context,
potentially resulting in a segmentation fault. Fixes one aspect of #1023.
If we didn't walk the whole chain, then there may be any kind of errors in the
part of the chain we didn't check, so setting all flags looks like the safe
thing to do.
Inspired by test code provided by Nicholas Wilson in PR #351.
The test will fail if someone sets MAX_INTERMEDIATE_CA to a value larger than
18 (default is 8), which is hopefully unlikely and can easily be fixed by
running long.sh again with a larger value if it ever happens.
Current behaviour is suboptimal as flags are not set, but currently the goal
is only to document/test existing behaviour.
By default, keep allowing SHA-1 in key exchange signatures. Disabling
it causes compatibility issues, especially with clients that use
TLS1.2 but don't send the signature_algorithms extension.
SHA-1 is forbidden in certificates by default, since it's vulnerable
to offline collision-based attacks.
There is now one test case to validate that SHA-1 is rejected in
certificates by default, and one test case to validate that SHA-1 is
supported if MBEDTLS_TLS_DEFAULT_ALLOW_SHA1 is #defined.
SHA-1 is now disabled by default in the X.509 layer. Explicitly enable
it in our tests for now. Updating all the test data to SHA-256 should
be done over time.
The ECJPAKE test suite uses a size zero array for the empty password
used in the tests, which is not valid C. This commit fixes this.
This originally showed up as a compilation failure on Visual Studio
2015, documented in IOTSSL-1242, but can also be observed with GCC
when using the -Wpedantic compilation option.
The test case was generated by modifying our signature code so that it
produces a 7-byte long padding (which also means garbage at the end, so it is
essential in to check that the error that is detected first is indeed the
padding rather than the final length check).
The modular inversion function hangs when provided with the modulus 1. This commit refuses this modulus with a BAD_INPUT error code. It also adds a test for this case.
Fix a buffer overflow when writting a string representation of an MPI
number to a buffer in hexadecimal. The problem occurs because hex
digits are written in pairs and this is not accounted for in the
calculation of the required buffer size when the number of digits is
odd.
The first three test cases from test_suites_pkparse.data failed because
the key file they read requires DES to be read. However, MBEDTLS_DES_C
was missing from the dependency list.
This curve has special arithmetic on 64 bit platforms and an untested
path lead to trying to free a buffer on the stack.
For the sake of completeness, a test case for a point with non-affine
coordinates has been added as well.
Fixes a regression introduced by an earlier commit that modified
x509_crt_verify_top() to ensure that valid certificates that are after past or
future valid in the chain are processed. However the change introduced a change
in behaviour that caused the verification flags MBEDTLS_X509_BADCERT_EXPIRED and
MBEDTLS_BADCERT_FUTURE to always be set whenever there is a failure in the
verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
Modifies the function mbedtls_x509_crl_parse() to ensure that a CRL in PEM
format with trailing characters after the footer does not result in the
execution of an infinite loop.
Fix potential integer overflows in the following functions:
* mbedtls_md2_update() to be bypassed and cause
* mbedtls_cipher_update()
* mbedtls_ctr_drbg_reseed()
This overflows would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
The tests load certificate chains from files. The CA chains contain a
past or future certificate and an invalid certificate. The test then
checks that the flags set are MBEDTLS_X509_BADCERT_EXPIRED or
MBEDTLS_X509_BADCERT_FUTURE.
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fixes the test suites to consistently use mbedtls_fprintf to output to
stdout or stderr.
Also redirects output from the tests to /dev/null to avoid confusing
output if the test suite code or library outputs anything to stdout.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fixes the test suites to consistently use mbedtls_fprintf to output to
stdout or stderr.
Also redirects output from the tests to /dev/null to avoid confusing
output if the test suite code or library outputs anything to stdout.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
Changes to allow the entropy tests to work for configurations without an
entropy seed file (MBEDTLS_ENTROPY_NV_SEED), and with no entropy sources
configured (MBEDTLS_TEST_NULL_ENTROPY).
Instead of polling the hardware entropy source a single time and
comparing the output with itself, the source is polled at least twice
and make sure that the separate outputs are different.
The self test is a quick way to check at startup whether the entropy
sources are functioning correctly. The self test only polls 8 bytes
from the default entropy source and performs the following checks:
- The bytes are not all 0x00 or 0xFF.
- The hardware does not return an error when polled.
- The entropy does not provide data in a patter. Only check pattern
at byte, word and long word sizes.
A standard 'test' that writes a seed file is added so that regular tests
still can succeed. This is in lieu of a 'SUITE_PRE_CODE' kind of
arrangement where a suite can run code before (and after) all other code
runs.
A test is added that checks if we can read and write the standard NV
seed file
A test is added that actually checks if the entropy and seed file values
that are the result of just using the NV seed are the same as the manual
calculation.
For a start, they don't even compile with Visual Studio due to strcasecmp
being missing. Secondly, on Windows Perl scripts aren't executable and have
to be run using the Perl interpreter directly; thankfully CMake is able to
find cygwin Perl straight away without problems.