Call `greentea_getc()` 8 times, and then `unhexify` once, instead of
calling `receive_byte()`, which inside calls `greentea_getc()` twice,
for every hex digit.
Since Python3 handles encoding differently than Python2,
a change in the way the data is encoded and sent to the target is needed.
1. Change the test data to be sent as hex string
2. Convert the characters to binary bytes.
This is done because the mbed tools translate the encoding differently
(mbed-greentea, and mbed-htrunner)
Limit log output in compat.sh and ssl-opt.sh, in case of failures with
these scripts where they may output seemingly unlimited length error
logs.
Note that ulimit -f uses units of 512 bytes, so we use 10 * 1024 * 1024
* 2 to get 10 GiB.
* origin/mbedtls-2.16:
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
Allow TODO in code
Use the docstring in the command line help
* origin/pr/2739:
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
* origin/mbedtls-2.16:
Changelog entry for HAVEGE fix
Prevent building the HAVEGE module on platforms where it doesn't work
Fix misuse of signed ints in the HAVEGE module
The failure of mbedtls_md was not checked in one place. This could have led
to an incorrect computation if a hardware accelerator failed. In most cases
this would have led to the key exchange failing, so the impact would have been
a hard-to-diagnose error reported in the wrong place. If the two sides of the
key exchange failed in the same way with an output from mbedtls_md that was
independent of the input, this could have led to an apparently successful key
exchange with a predictable key, thus a glitching md accelerator could have
caused a security vulnerability.
Record the commit ID in addition to the symbolic name of the version
being tested. This makes it easier to figure out what has been
compared when reading logs that don't always indicate explicitly what
things like HEAD are.
This makes the title of HTML reports somewhat verbose, but I think
that's a small price to pay.
* origin/pr/2700:
Changelog entry for HAVEGE fix
Prevent building the HAVEGE module on platforms where it doesn't work
Fix misuse of signed ints in the HAVEGE module
* restricted/pr/582:
Add a test for signing content with a long ECDSA key
Add documentation notes about the required size of the signature buffers
Add missing MBEDTLS_ECP_C dependencies in check_config.h
Change size of preallocated buffer for pk_sign() calls
* origin/pr/2714:
programs: Make `make clean` clean all programs always
ssl_tls: Enable Suite B with subset of ECP curves
windows: Fix Release x64 configuration
timing: Remove redundant include file
net_sockets: Fix typo in net_would_block()
* origin/pr/2701:
Add all.sh component that exercises invalid_param checks
Remove mbedtls_param_failed from programs
Make it easier to define MBEDTLS_PARAM_FAILED as assert
Make test suites compatible with #include <assert.h>
Pass -m32 to the linker as well
* origin/pr/2053:
Clarify ChangeLog entry for fix to #1628
Add Changelog entry for clang test-ref-configs.pl fix
Enable more compiler warnings in tests/Makefile
Change file scoping of test helpers.function
If `make TEST_CPP:=1` is run, and then `make clean` (as opposed to `make
TEST_CPP:=1 clean`), the cpp_dummy_build will be left behind after the
clean. Make `make clean more convenient to use by removing programs that
could be generated from any configuration, not just the active one.
Fixes#1862
Inherit PlatformToolset from the project configuration. This allow the
project to configure PlatformToolset, and aligns the Release x64 build
with other build types.
Fixes#1430
With the change to the full config, there were no longer any tests
that exercise invalid-parameter behavior. The test suite exercises
invalid-parameter behavior by calling TEST_INVALID_PARAM and friends,
relying on the test suite's mbedtls_check_param function. This
function is only enabled if MBEDTLS_CHECK_PARAMS is defined but not
MBEDTLS_CHECK_PARAMS_ASSERT.
Add a component to all.sh that enables MBEDTLS_CHECK_PARAMS but
disables MBEDTLS_CHECK_PARAMS_ASSERT and doesn't define
MBEDTLS_PARAM_FAILED. This way, the xxx_invalid_param() tests do run.
Since sample programs don't provide a mbedtls_check_param function,
this component doesn't build the sample programs.
All sample and test programs had a definition of mbedtls_param_failed.
This was necessary because we wanted to be able to build them in a
configuration with MBEDTLS_CHECK_PARAMS set but without a definition
of MBEDTLS_PARAM_FAILED. Now that we activate the sample definition of
MBEDTLS_PARAM_FAILED in config.h when testing with
MBEDTLS_CHECK_PARAMS set, this boilerplate code is no longer needed.
Introduce a new configuration option MBEDTLS_CHECK_PARAMS_ASSERT,
which is disabled by default. When this option is enabled,
MBEDTLS_PARAM_FAILED defaults to assert rather than to a call to
mbedtls_param_failed, and <assert.h> is included.
This fixes#2671 (no easy way to make MBEDTLS_PARAM_FAILED assert)
without breaking backward compatibility. With this change,
`config.pl full` runs tests with MBEDTLS_PARAM_FAILED set to assert,
so the tests will fail if a validation check fails, and programs don't
need to provide their own definition of mbedtls_param_failed().
Don't use the macro name assert. It's technically permitted as long as
<assert.h> is not included, but it's fragile, because it means the
code and any header that it includes must not include <assert.h>.
For unit tests and sample programs, CFLAGS=-m32 is enough to get a
32-bit build, because these programs are all compiled directly
from *.c to the executable in one shot. But with makefile rules that
first build object files and then link them, LDFLAGS=-m32 is also
needed.
If int is not capable of storing as many values as unsigned, the code
may generate a trap value. If signed int and unsigned int aren't
32-bit types, the code may calculate meaningless values.
The elements of the HAVEGE state are manipulated with bitwise
operations, with the expectations that the elements are 32-bit
unsigned integers (or larger). But they are declared as int, and so
the code has undefined behavior. Clang with Asan correctly points out
some shifts that reach the sign bit.
Use unsigned int internally. This is technically an aliasing violation
since we're accessing an array of `int` via a pointer to `unsigned
int`, but since we don't access the array directly inside the same
function, it's very unlikely to be compiled in an unintended manner.