mbedtls/library/ssl_invasive.h
Manuel Pégourié-Gonnard 045f094c81 Add dummy constant-flow HMAC function with tests
The dummy implementation is not constant-flow at all for now, it's just
here as a starting point and a support for developing the tests and putting
the infrastructure in place.

Depending on the implementation strategy, there might be various corner cases
depending on where the lengths fall relative to block boundaries. So it seems
safer to just test all possible lengths in a given range than to use only a
few randomly-chosen values.

Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
2020-07-15 12:25:52 +02:00

79 lines
3.4 KiB
C

/**
* \file ssl_invasive.h
*
* \brief SSL module: interfaces for invasive testing only.
*
* The interfaces in this file are intended for testing purposes only.
* They SHOULD NOT be made available in library integrations except when
* building the library for testing.
*/
/*
* Copyright (C) 2020, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_SSL_INVASIVE_H
#define MBEDTLS_SSL_INVASIVE_H
#include "common.h"
#include "mbedtls/md.h"
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_CBC) && \
( defined(MBEDTLS_SSL_PROTO_TLS1) || \
defined(MBEDTLS_SSL_PROTO_TLS1_1) | \
defined(MBEDTLS_SSL_PROTO_TLS1_2) )
/** \brief Compute the HMAC of variable-length data with constant flow.
*
* This function computes the HMAC of the concatenation of \p add_data and \p
* data, and does with a code flow and memory access pattern that does not
* depend on \p data_len_secret, but only on \p min_data_len and \p
* max_data_len. In particular, this function always reads exactly \p
* max_data_len bytes from \p data.
*
* \param ctx The HMAC context. It must have keys configured
* with mbedtls_md_hmac_starts(). It is reset using
* mbedtls_md_hmac_reset() after the computation is
* complete to prepare for the next computation.
* \param add_data The additional data prepended to \p data. This
* must point to a readable buffer of \p add_data_len
* bytes.
* \param add_data_len The length of \p add_data in bytes.
* \param data The data appended to \p add_data. This must point
* to a readable buffer of \p max_data_len bytes.
* \param data_len_secret The length of the data to process in \p data.
* This must be no less than \p min_data_len and no
* greated than \p max_data_len.
* \param min_data_len The minimal length of \p data in bytes.
* \param max_data_len The maximal length of \p data in bytes.
* \param output The HMAC will be written here. This must point to
* a writeable buffer of sufficient size to hold the
* HMAC value.
*
* \retval 0
* Success.
* \retval MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED
* The hardware accelerator failed.
*/
int mbedtls_ssl_cf_hmac(
mbedtls_md_context_t *ctx,
const unsigned char *add_data, size_t add_data_len,
const unsigned char *data, size_t data_len_secret,
size_t min_data_len, size_t max_data_len,
unsigned char *output );
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_CBC && TLS 1.0-1.2 */
#endif /* MBEDTLS_SSL_INVASIVE_H */