mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-12-25 01:05:41 +00:00
1269 lines
34 KiB
C
1269 lines
34 KiB
C
/*
|
|
* The RSA public-key cryptosystem
|
|
*
|
|
* Copyright (C) 2006-2011, Brainspark B.V.
|
|
*
|
|
* This file is part of PolarSSL (http://www.polarssl.org)
|
|
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
/*
|
|
* RSA was designed by Ron Rivest, Adi Shamir and Len Adleman.
|
|
*
|
|
* http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
|
|
* http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf
|
|
*/
|
|
|
|
#include "polarssl/config.h"
|
|
|
|
#if defined(POLARSSL_RSA_C)
|
|
|
|
#include "polarssl/rsa.h"
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
#include "polarssl/md.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
/*
|
|
* Initialize an RSA context
|
|
*/
|
|
void rsa_init( rsa_context *ctx,
|
|
int padding,
|
|
int hash_id )
|
|
{
|
|
memset( ctx, 0, sizeof( rsa_context ) );
|
|
|
|
ctx->padding = padding;
|
|
ctx->hash_id = hash_id;
|
|
}
|
|
|
|
#if defined(POLARSSL_GENPRIME)
|
|
|
|
/*
|
|
* Generate an RSA keypair
|
|
*/
|
|
int rsa_gen_key( rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
unsigned int nbits, int exponent )
|
|
{
|
|
int ret;
|
|
mpi P1, Q1, H, G;
|
|
|
|
if( f_rng == NULL || nbits < 128 || exponent < 3 )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
|
|
|
|
/*
|
|
* find primes P and Q with Q < P so that:
|
|
* GCD( E, (P-1)*(Q-1) ) == 1
|
|
*/
|
|
MPI_CHK( mpi_lset( &ctx->E, exponent ) );
|
|
|
|
do
|
|
{
|
|
MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0,
|
|
f_rng, p_rng ) );
|
|
|
|
MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
|
|
f_rng, p_rng ) );
|
|
|
|
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
|
|
mpi_swap( &ctx->P, &ctx->Q );
|
|
|
|
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
|
|
continue;
|
|
|
|
MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
|
|
if( mpi_msb( &ctx->N ) != nbits )
|
|
continue;
|
|
|
|
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
|
|
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
|
|
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
|
|
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
|
|
}
|
|
while( mpi_cmp_int( &G, 1 ) != 0 );
|
|
|
|
/*
|
|
* D = E^-1 mod ((P-1)*(Q-1))
|
|
* DP = D mod (P - 1)
|
|
* DQ = D mod (Q - 1)
|
|
* QP = Q^-1 mod P
|
|
*/
|
|
MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) );
|
|
MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
|
|
MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
|
|
MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );
|
|
|
|
ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
|
|
|
|
if( ret != 0 )
|
|
{
|
|
rsa_free( ctx );
|
|
return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Check a public RSA key
|
|
*/
|
|
int rsa_check_pubkey( const rsa_context *ctx )
|
|
{
|
|
if( !ctx->N.p || !ctx->E.p )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
if( ( ctx->N.p[0] & 1 ) == 0 ||
|
|
( ctx->E.p[0] & 1 ) == 0 )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
if( mpi_msb( &ctx->N ) < 128 ||
|
|
mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
if( mpi_msb( &ctx->E ) < 2 ||
|
|
mpi_msb( &ctx->E ) > 64 )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Check a private RSA key
|
|
*/
|
|
int rsa_check_privkey( const rsa_context *ctx )
|
|
{
|
|
int ret;
|
|
mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2, DP, DQ, QP;
|
|
|
|
if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
|
|
return( ret );
|
|
|
|
if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
|
|
mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 );
|
|
mpi_init( &L1 ); mpi_init( &L2 ); mpi_init( &DP ); mpi_init( &DQ );
|
|
mpi_init( &QP );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
|
|
MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );
|
|
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
|
|
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
|
|
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
|
|
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
|
|
|
|
MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
|
|
MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );
|
|
MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) );
|
|
|
|
MPI_CHK( mpi_mod_mpi( &DP, &ctx->D, &P1 ) );
|
|
MPI_CHK( mpi_mod_mpi( &DQ, &ctx->D, &Q1 ) );
|
|
MPI_CHK( mpi_inv_mod( &QP, &ctx->Q, &ctx->P ) );
|
|
/*
|
|
* Check for a valid PKCS1v2 private key
|
|
*/
|
|
if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||
|
|
mpi_cmp_mpi( &DP, &ctx->DP ) != 0 ||
|
|
mpi_cmp_mpi( &DQ, &ctx->DQ ) != 0 ||
|
|
mpi_cmp_mpi( &QP, &ctx->QP ) != 0 ||
|
|
mpi_cmp_int( &L2, 0 ) != 0 ||
|
|
mpi_cmp_int( &I, 1 ) != 0 ||
|
|
mpi_cmp_int( &G, 1 ) != 0 )
|
|
{
|
|
ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;
|
|
}
|
|
|
|
cleanup:
|
|
mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
|
|
mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 );
|
|
mpi_free( &L1 ); mpi_free( &L2 ); mpi_free( &DP ); mpi_free( &DQ );
|
|
mpi_free( &QP );
|
|
|
|
if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
|
|
return( ret );
|
|
|
|
if( ret != 0 )
|
|
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA public key operation
|
|
*/
|
|
int rsa_public( rsa_context *ctx,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
int ret;
|
|
size_t olen;
|
|
mpi T;
|
|
|
|
mpi_init( &T );
|
|
|
|
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
|
|
|
|
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
|
|
{
|
|
mpi_free( &T );
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
olen = ctx->len;
|
|
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
|
|
MPI_CHK( mpi_write_binary( &T, output, olen ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &T );
|
|
|
|
if( ret != 0 )
|
|
return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA private key operation
|
|
*/
|
|
int rsa_private( rsa_context *ctx,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
int ret;
|
|
size_t olen;
|
|
mpi T, T1, T2;
|
|
|
|
mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
|
|
|
|
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
|
|
|
|
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
|
|
{
|
|
mpi_free( &T );
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
#if defined(POLARSSL_RSA_NO_CRT)
|
|
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );
|
|
#else
|
|
/*
|
|
* faster decryption using the CRT
|
|
*
|
|
* T1 = input ^ dP mod P
|
|
* T2 = input ^ dQ mod Q
|
|
*/
|
|
MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );
|
|
MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );
|
|
|
|
/*
|
|
* T = (T1 - T2) * (Q^-1 mod P) mod P
|
|
*/
|
|
MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
|
|
MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );
|
|
|
|
/*
|
|
* output = T2 + T * Q
|
|
*/
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
|
|
MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
|
|
#endif
|
|
|
|
olen = ctx->len;
|
|
MPI_CHK( mpi_write_binary( &T, output, olen ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
|
|
|
|
if( ret != 0 )
|
|
return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
/**
|
|
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
|
|
*
|
|
* \param dst buffer to mask
|
|
* \param dlen length of destination buffer
|
|
* \param src source of the mask generation
|
|
* \param slen length of the source buffer
|
|
* \param md_ctx message digest context to use
|
|
*/
|
|
static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen,
|
|
md_context_t *md_ctx )
|
|
{
|
|
unsigned char mask[POLARSSL_MD_MAX_SIZE];
|
|
unsigned char counter[4];
|
|
unsigned char *p;
|
|
unsigned int hlen;
|
|
size_t i, use_len;
|
|
|
|
memset( mask, 0, POLARSSL_MD_MAX_SIZE );
|
|
memset( counter, 0, 4 );
|
|
|
|
hlen = md_ctx->md_info->size;
|
|
|
|
// Generate and apply dbMask
|
|
//
|
|
p = dst;
|
|
|
|
while( dlen > 0 )
|
|
{
|
|
use_len = hlen;
|
|
if( dlen < hlen )
|
|
use_len = dlen;
|
|
|
|
md_starts( md_ctx );
|
|
md_update( md_ctx, src, slen );
|
|
md_update( md_ctx, counter, 4 );
|
|
md_finish( md_ctx, mask );
|
|
|
|
for( i = 0; i < use_len; ++i )
|
|
*p++ ^= mask[i];
|
|
|
|
counter[3]++;
|
|
|
|
dlen -= use_len;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Add the message padding, then do an RSA operation
|
|
*/
|
|
int rsa_pkcs1_encrypt( rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode, size_t ilen,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
size_t nb_pad, olen;
|
|
int ret;
|
|
unsigned char *p = output;
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
unsigned int hlen;
|
|
const md_info_t *md_info;
|
|
md_context_t md_ctx;
|
|
#endif
|
|
|
|
olen = ctx->len;
|
|
|
|
if( f_rng == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
switch( ctx->padding )
|
|
{
|
|
case RSA_PKCS_V15:
|
|
|
|
if( olen < ilen + 11 )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
nb_pad = olen - 3 - ilen;
|
|
|
|
*p++ = 0;
|
|
if( mode == RSA_PUBLIC )
|
|
{
|
|
*p++ = RSA_CRYPT;
|
|
|
|
while( nb_pad-- > 0 )
|
|
{
|
|
int rng_dl = 100;
|
|
|
|
do {
|
|
ret = f_rng( p_rng, p, 1 );
|
|
} while( *p == 0 && --rng_dl && ret == 0 );
|
|
|
|
// Check if RNG failed to generate data
|
|
//
|
|
if( rng_dl == 0 || ret != 0)
|
|
return POLARSSL_ERR_RSA_RNG_FAILED + ret;
|
|
|
|
p++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*p++ = RSA_SIGN;
|
|
|
|
while( nb_pad-- > 0 )
|
|
*p++ = 0xFF;
|
|
}
|
|
|
|
*p++ = 0;
|
|
memcpy( p, input, ilen );
|
|
break;
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
case RSA_PKCS_V21:
|
|
|
|
md_info = md_info_from_type( ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = md_get_size( md_info );
|
|
|
|
if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
memset( output, 0, olen );
|
|
|
|
*p++ = 0;
|
|
|
|
// Generate a random octet string seed
|
|
//
|
|
if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
|
|
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
|
|
|
|
p += hlen;
|
|
|
|
// Construct DB
|
|
//
|
|
md( md_info, p, 0, p );
|
|
p += hlen;
|
|
p += olen - 2 * hlen - 2 - ilen;
|
|
*p++ = 1;
|
|
memcpy( p, input, ilen );
|
|
|
|
md_init_ctx( &md_ctx, md_info );
|
|
|
|
// maskedDB: Apply dbMask to DB
|
|
//
|
|
mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
|
|
&md_ctx );
|
|
|
|
// maskedSeed: Apply seedMask to seed
|
|
//
|
|
mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
|
|
&md_ctx );
|
|
|
|
md_free_ctx( &md_ctx );
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
return( ( mode == RSA_PUBLIC )
|
|
? rsa_public( ctx, output, output )
|
|
: rsa_private( ctx, output, output ) );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA operation, then remove the message padding
|
|
*/
|
|
int rsa_pkcs1_decrypt( rsa_context *ctx,
|
|
int mode, size_t *olen,
|
|
const unsigned char *input,
|
|
unsigned char *output,
|
|
size_t output_max_len)
|
|
{
|
|
int ret;
|
|
size_t ilen;
|
|
unsigned char *p;
|
|
unsigned char bt;
|
|
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
unsigned char lhash[POLARSSL_MD_MAX_SIZE];
|
|
unsigned int hlen;
|
|
const md_info_t *md_info;
|
|
md_context_t md_ctx;
|
|
#endif
|
|
|
|
ilen = ctx->len;
|
|
|
|
if( ilen < 16 || ilen > sizeof( buf ) )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ret = ( mode == RSA_PUBLIC )
|
|
? rsa_public( ctx, input, buf )
|
|
: rsa_private( ctx, input, buf );
|
|
|
|
if( ret != 0 )
|
|
return( ret );
|
|
|
|
p = buf;
|
|
|
|
switch( ctx->padding )
|
|
{
|
|
case RSA_PKCS_V15:
|
|
|
|
if( *p++ != 0 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
bt = *p++;
|
|
if( ( bt != RSA_CRYPT && mode == RSA_PRIVATE ) ||
|
|
( bt != RSA_SIGN && mode == RSA_PUBLIC ) )
|
|
{
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
if( bt == RSA_CRYPT )
|
|
{
|
|
while( *p != 0 && p < buf + ilen - 1 )
|
|
p++;
|
|
|
|
if( *p != 0 || p >= buf + ilen - 1 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
p++;
|
|
}
|
|
else
|
|
{
|
|
while( *p == 0xFF && p < buf + ilen - 1 )
|
|
p++;
|
|
|
|
if( *p != 0 || p >= buf + ilen - 1 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
p++;
|
|
}
|
|
|
|
break;
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
case RSA_PKCS_V21:
|
|
|
|
if( *p++ != 0 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
md_info = md_info_from_type( ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = md_get_size( md_info );
|
|
|
|
md_init_ctx( &md_ctx, md_info );
|
|
|
|
// Generate lHash
|
|
//
|
|
md( md_info, lhash, 0, lhash );
|
|
|
|
// seed: Apply seedMask to maskedSeed
|
|
//
|
|
mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
|
|
&md_ctx );
|
|
|
|
// DB: Apply dbMask to maskedDB
|
|
//
|
|
mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
|
|
&md_ctx );
|
|
|
|
p += hlen;
|
|
md_free_ctx( &md_ctx );
|
|
|
|
// Check validity
|
|
//
|
|
if( memcmp( lhash, p, hlen ) != 0 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
p += hlen;
|
|
|
|
while( *p == 0 && p < buf + ilen )
|
|
p++;
|
|
|
|
if( p == buf + ilen )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
if( *p++ != 0x01 )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
if (ilen - (p - buf) > output_max_len)
|
|
return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
|
|
|
|
*olen = ilen - (p - buf);
|
|
memcpy( output, p, *olen );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA operation to sign the message digest
|
|
*/
|
|
int rsa_pkcs1_sign( rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
int hash_id,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
unsigned char *sig )
|
|
{
|
|
size_t nb_pad, olen;
|
|
unsigned char *p = sig;
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
unsigned char salt[POLARSSL_MD_MAX_SIZE];
|
|
unsigned int slen, hlen, offset = 0;
|
|
int ret;
|
|
size_t msb;
|
|
const md_info_t *md_info;
|
|
md_context_t md_ctx;
|
|
#else
|
|
(void) f_rng;
|
|
(void) p_rng;
|
|
#endif
|
|
|
|
olen = ctx->len;
|
|
|
|
switch( ctx->padding )
|
|
{
|
|
case RSA_PKCS_V15:
|
|
|
|
switch( hash_id )
|
|
{
|
|
case SIG_RSA_RAW:
|
|
nb_pad = olen - 3 - hashlen;
|
|
break;
|
|
|
|
case SIG_RSA_MD2:
|
|
case SIG_RSA_MD4:
|
|
case SIG_RSA_MD5:
|
|
nb_pad = olen - 3 - 34;
|
|
break;
|
|
|
|
case SIG_RSA_SHA1:
|
|
nb_pad = olen - 3 - 35;
|
|
break;
|
|
|
|
case SIG_RSA_SHA224:
|
|
nb_pad = olen - 3 - 47;
|
|
break;
|
|
|
|
case SIG_RSA_SHA256:
|
|
nb_pad = olen - 3 - 51;
|
|
break;
|
|
|
|
case SIG_RSA_SHA384:
|
|
nb_pad = olen - 3 - 67;
|
|
break;
|
|
|
|
case SIG_RSA_SHA512:
|
|
nb_pad = olen - 3 - 83;
|
|
break;
|
|
|
|
|
|
default:
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
*p++ = 0;
|
|
*p++ = RSA_SIGN;
|
|
memset( p, 0xFF, nb_pad );
|
|
p += nb_pad;
|
|
*p++ = 0;
|
|
|
|
switch( hash_id )
|
|
{
|
|
case SIG_RSA_RAW:
|
|
memcpy( p, hash, hashlen );
|
|
break;
|
|
|
|
case SIG_RSA_MD2:
|
|
memcpy( p, ASN1_HASH_MDX, 18 );
|
|
memcpy( p + 18, hash, 16 );
|
|
p[13] = 2; break;
|
|
|
|
case SIG_RSA_MD4:
|
|
memcpy( p, ASN1_HASH_MDX, 18 );
|
|
memcpy( p + 18, hash, 16 );
|
|
p[13] = 4; break;
|
|
|
|
case SIG_RSA_MD5:
|
|
memcpy( p, ASN1_HASH_MDX, 18 );
|
|
memcpy( p + 18, hash, 16 );
|
|
p[13] = 5; break;
|
|
|
|
case SIG_RSA_SHA1:
|
|
memcpy( p, ASN1_HASH_SHA1, 15 );
|
|
memcpy( p + 15, hash, 20 );
|
|
break;
|
|
|
|
case SIG_RSA_SHA224:
|
|
memcpy( p, ASN1_HASH_SHA2X, 19 );
|
|
memcpy( p + 19, hash, 28 );
|
|
p[1] += 28; p[14] = 4; p[18] += 28; break;
|
|
|
|
case SIG_RSA_SHA256:
|
|
memcpy( p, ASN1_HASH_SHA2X, 19 );
|
|
memcpy( p + 19, hash, 32 );
|
|
p[1] += 32; p[14] = 1; p[18] += 32; break;
|
|
|
|
case SIG_RSA_SHA384:
|
|
memcpy( p, ASN1_HASH_SHA2X, 19 );
|
|
memcpy( p + 19, hash, 48 );
|
|
p[1] += 48; p[14] = 2; p[18] += 48; break;
|
|
|
|
case SIG_RSA_SHA512:
|
|
memcpy( p, ASN1_HASH_SHA2X, 19 );
|
|
memcpy( p + 19, hash, 64 );
|
|
p[1] += 64; p[14] = 3; p[18] += 64; break;
|
|
|
|
default:
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
break;
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
case RSA_PKCS_V21:
|
|
|
|
if( f_rng == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
switch( hash_id )
|
|
{
|
|
case SIG_RSA_MD2:
|
|
case SIG_RSA_MD4:
|
|
case SIG_RSA_MD5:
|
|
hashlen = 16;
|
|
break;
|
|
|
|
case SIG_RSA_SHA1:
|
|
hashlen = 20;
|
|
break;
|
|
|
|
case SIG_RSA_SHA224:
|
|
hashlen = 28;
|
|
break;
|
|
|
|
case SIG_RSA_SHA256:
|
|
hashlen = 32;
|
|
break;
|
|
|
|
case SIG_RSA_SHA384:
|
|
hashlen = 48;
|
|
break;
|
|
|
|
case SIG_RSA_SHA512:
|
|
hashlen = 64;
|
|
break;
|
|
|
|
default:
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
md_info = md_info_from_type( ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = md_get_size( md_info );
|
|
slen = hlen;
|
|
|
|
if( olen < hlen + slen + 2 )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
memset( sig, 0, olen );
|
|
|
|
msb = mpi_msb( &ctx->N ) - 1;
|
|
|
|
// Generate salt of length slen
|
|
//
|
|
if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
|
|
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
|
|
|
|
// Note: EMSA-PSS encoding is over the length of N - 1 bits
|
|
//
|
|
msb = mpi_msb( &ctx->N ) - 1;
|
|
p += olen - hlen * 2 - 2;
|
|
*p++ = 0x01;
|
|
memcpy( p, salt, slen );
|
|
p += slen;
|
|
|
|
md_init_ctx( &md_ctx, md_info );
|
|
|
|
// Generate H = Hash( M' )
|
|
//
|
|
md_starts( &md_ctx );
|
|
md_update( &md_ctx, p, 8 );
|
|
md_update( &md_ctx, hash, hashlen );
|
|
md_update( &md_ctx, salt, slen );
|
|
md_finish( &md_ctx, p );
|
|
|
|
// Compensate for boundary condition when applying mask
|
|
//
|
|
if( msb % 8 == 0 )
|
|
offset = 1;
|
|
|
|
// maskedDB: Apply dbMask to DB
|
|
//
|
|
mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
|
|
|
|
md_free_ctx( &md_ctx );
|
|
|
|
msb = mpi_msb( &ctx->N ) - 1;
|
|
sig[0] &= 0xFF >> ( olen * 8 - msb );
|
|
|
|
p += hlen;
|
|
*p++ = 0xBC;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
return( ( mode == RSA_PUBLIC )
|
|
? rsa_public( ctx, sig, sig )
|
|
: rsa_private( ctx, sig, sig ) );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA operation and check the message digest
|
|
*/
|
|
int rsa_pkcs1_verify( rsa_context *ctx,
|
|
int mode,
|
|
int hash_id,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
unsigned char *sig )
|
|
{
|
|
int ret;
|
|
size_t len, siglen;
|
|
unsigned char *p, c;
|
|
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
unsigned char result[POLARSSL_MD_MAX_SIZE];
|
|
unsigned char zeros[8];
|
|
unsigned int hlen;
|
|
size_t slen, msb;
|
|
const md_info_t *md_info;
|
|
md_context_t md_ctx;
|
|
#endif
|
|
siglen = ctx->len;
|
|
|
|
if( siglen < 16 || siglen > sizeof( buf ) )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ret = ( mode == RSA_PUBLIC )
|
|
? rsa_public( ctx, sig, buf )
|
|
: rsa_private( ctx, sig, buf );
|
|
|
|
if( ret != 0 )
|
|
return( ret );
|
|
|
|
p = buf;
|
|
|
|
switch( ctx->padding )
|
|
{
|
|
case RSA_PKCS_V15:
|
|
|
|
if( *p++ != 0 || *p++ != RSA_SIGN )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
while( *p != 0 )
|
|
{
|
|
if( p >= buf + siglen - 1 || *p != 0xFF )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
p++;
|
|
}
|
|
p++;
|
|
|
|
len = siglen - ( p - buf );
|
|
|
|
if( len == 33 && hash_id == SIG_RSA_SHA1 )
|
|
{
|
|
if( memcmp( p, ASN1_HASH_SHA1_ALT, 13 ) == 0 &&
|
|
memcmp( p + 13, hash, 20 ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
if( len == 34 )
|
|
{
|
|
c = p[13];
|
|
p[13] = 0;
|
|
|
|
if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
|
|
if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
|
|
( c == 4 && hash_id == SIG_RSA_MD4 ) ||
|
|
( c == 5 && hash_id == SIG_RSA_MD5 ) )
|
|
{
|
|
if( memcmp( p + 18, hash, 16 ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
}
|
|
|
|
if( len == 35 && hash_id == SIG_RSA_SHA1 )
|
|
{
|
|
if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&
|
|
memcmp( p + 15, hash, 20 ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||
|
|
( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||
|
|
( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||
|
|
( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )
|
|
{
|
|
c = p[1] - 17;
|
|
p[1] = 17;
|
|
p[14] = 0;
|
|
|
|
if( p[18] == c &&
|
|
memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&
|
|
memcmp( p + 19, hash, c ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
|
|
if( len == hashlen && hash_id == SIG_RSA_RAW )
|
|
{
|
|
if( memcmp( p, hash, hashlen ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
|
|
break;
|
|
|
|
#if defined(POLARSSL_PKCS1_V21)
|
|
case RSA_PKCS_V21:
|
|
|
|
if( buf[siglen - 1] != 0xBC )
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
|
|
switch( hash_id )
|
|
{
|
|
case SIG_RSA_MD2:
|
|
case SIG_RSA_MD4:
|
|
case SIG_RSA_MD5:
|
|
hashlen = 16;
|
|
break;
|
|
|
|
case SIG_RSA_SHA1:
|
|
hashlen = 20;
|
|
break;
|
|
|
|
case SIG_RSA_SHA224:
|
|
hashlen = 28;
|
|
break;
|
|
|
|
case SIG_RSA_SHA256:
|
|
hashlen = 32;
|
|
break;
|
|
|
|
case SIG_RSA_SHA384:
|
|
hashlen = 48;
|
|
break;
|
|
|
|
case SIG_RSA_SHA512:
|
|
hashlen = 64;
|
|
break;
|
|
|
|
default:
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
md_info = md_info_from_type( ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = md_get_size( md_info );
|
|
slen = siglen - hlen - 1;
|
|
|
|
memset( zeros, 0, 8 );
|
|
|
|
// Note: EMSA-PSS verification is over the length of N - 1 bits
|
|
//
|
|
msb = mpi_msb( &ctx->N ) - 1;
|
|
|
|
// Compensate for boundary condition when applying mask
|
|
//
|
|
if( msb % 8 == 0 )
|
|
{
|
|
p++;
|
|
siglen -= 1;
|
|
}
|
|
if( buf[0] >> ( 8 - siglen * 8 + msb ) )
|
|
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
md_init_ctx( &md_ctx, md_info );
|
|
|
|
mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
|
|
|
|
buf[0] &= 0xFF >> ( siglen * 8 - msb );
|
|
|
|
while( *p == 0 && p < buf + siglen )
|
|
p++;
|
|
|
|
if( p == buf + siglen ||
|
|
*p++ != 0x01 )
|
|
{
|
|
md_free_ctx( &md_ctx );
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
slen -= p - buf;
|
|
|
|
// Generate H = Hash( M' )
|
|
//
|
|
md_starts( &md_ctx );
|
|
md_update( &md_ctx, zeros, 8 );
|
|
md_update( &md_ctx, hash, hashlen );
|
|
md_update( &md_ctx, p, slen );
|
|
md_finish( &md_ctx, result );
|
|
|
|
md_free_ctx( &md_ctx );
|
|
|
|
if( memcmp( p + slen, result, hlen ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
|
|
#endif
|
|
|
|
default:
|
|
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
return( POLARSSL_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
/*
|
|
* Free the components of an RSA key
|
|
*/
|
|
void rsa_free( rsa_context *ctx )
|
|
{
|
|
mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );
|
|
mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );
|
|
mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D );
|
|
mpi_free( &ctx->E ); mpi_free( &ctx->N );
|
|
}
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
|
|
#include "polarssl/sha1.h"
|
|
|
|
/*
|
|
* Example RSA-1024 keypair, for test purposes
|
|
*/
|
|
#define KEY_LEN 128
|
|
|
|
#define RSA_N "9292758453063D803DD603D5E777D788" \
|
|
"8ED1D5BF35786190FA2F23EBC0848AEA" \
|
|
"DDA92CA6C3D80B32C4D109BE0F36D6AE" \
|
|
"7130B9CED7ACDF54CFC7555AC14EEBAB" \
|
|
"93A89813FBF3C4F8066D2D800F7C38A8" \
|
|
"1AE31942917403FF4946B0A83D3D3E05" \
|
|
"EE57C6F5F5606FB5D4BC6CD34EE0801A" \
|
|
"5E94BB77B07507233A0BC7BAC8F90F79"
|
|
|
|
#define RSA_E "10001"
|
|
|
|
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
|
|
"66CA472BC44D253102F8B4A9D3BFA750" \
|
|
"91386C0077937FE33FA3252D28855837" \
|
|
"AE1B484A8A9A45F7EE8C0C634F99E8CD" \
|
|
"DF79C5CE07EE72C7F123142198164234" \
|
|
"CABB724CF78B8173B9F880FC86322407" \
|
|
"AF1FEDFDDE2BEB674CA15F3E81A1521E" \
|
|
"071513A1E85B5DFA031F21ECAE91A34D"
|
|
|
|
#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
|
|
"2C01CAD19EA484A87EA4377637E75500" \
|
|
"FCB2005C5C7DD6EC4AC023CDA285D796" \
|
|
"C3D9E75E1EFC42488BB4F1D13AC30A57"
|
|
|
|
#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
|
|
"E211C2B9E5DB1ED0BF61D0D9899620F4" \
|
|
"910E4168387E3C30AA1E00C339A79508" \
|
|
"8452DD96A9A5EA5D9DCA68DA636032AF"
|
|
|
|
#define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \
|
|
"3C94D22288ACD763FD8E5600ED4A702D" \
|
|
"F84198A5F06C2E72236AE490C93F07F8" \
|
|
"3CC559CD27BC2D1CA488811730BB5725"
|
|
|
|
#define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \
|
|
"D8AAEA56749EA28623272E4F7D0592AF" \
|
|
"7C1F1313CAC9471B5C523BFE592F517B" \
|
|
"407A1BD76C164B93DA2D32A383E58357"
|
|
|
|
#define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \
|
|
"F38D18D2B2F0E2DD275AA977E2BF4411" \
|
|
"F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
|
|
"A74206CEC169D74BF5A8C50D6F48EA08"
|
|
|
|
#define PT_LEN 24
|
|
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
|
|
"\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
|
|
|
|
static int myrand( void *rng_state, unsigned char *output, size_t len )
|
|
{
|
|
size_t i;
|
|
|
|
if( rng_state != NULL )
|
|
rng_state = NULL;
|
|
|
|
for( i = 0; i < len; ++i )
|
|
output[i] = rand();
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Checkup routine
|
|
*/
|
|
int rsa_self_test( int verbose )
|
|
{
|
|
size_t len;
|
|
rsa_context rsa;
|
|
unsigned char rsa_plaintext[PT_LEN];
|
|
unsigned char rsa_decrypted[PT_LEN];
|
|
unsigned char rsa_ciphertext[KEY_LEN];
|
|
#if defined(POLARSSL_SHA1_C)
|
|
unsigned char sha1sum[20];
|
|
#endif
|
|
|
|
rsa_init( &rsa, RSA_PKCS_V15, 0 );
|
|
|
|
rsa.len = KEY_LEN;
|
|
mpi_read_string( &rsa.N , 16, RSA_N );
|
|
mpi_read_string( &rsa.E , 16, RSA_E );
|
|
mpi_read_string( &rsa.D , 16, RSA_D );
|
|
mpi_read_string( &rsa.P , 16, RSA_P );
|
|
mpi_read_string( &rsa.Q , 16, RSA_Q );
|
|
mpi_read_string( &rsa.DP, 16, RSA_DP );
|
|
mpi_read_string( &rsa.DQ, 16, RSA_DQ );
|
|
mpi_read_string( &rsa.QP, 16, RSA_QP );
|
|
|
|
if( verbose != 0 )
|
|
printf( " RSA key validation: " );
|
|
|
|
if( rsa_check_pubkey( &rsa ) != 0 ||
|
|
rsa_check_privkey( &rsa ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
printf( "passed\n PKCS#1 encryption : " );
|
|
|
|
memcpy( rsa_plaintext, RSA_PT, PT_LEN );
|
|
|
|
if( rsa_pkcs1_encrypt( &rsa, &myrand, NULL, RSA_PUBLIC, PT_LEN,
|
|
rsa_plaintext, rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
printf( "passed\n PKCS#1 decryption : " );
|
|
|
|
if( rsa_pkcs1_decrypt( &rsa, RSA_PRIVATE, &len,
|
|
rsa_ciphertext, rsa_decrypted,
|
|
sizeof(rsa_decrypted) ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
#if defined(POLARSSL_SHA1_C)
|
|
if( verbose != 0 )
|
|
printf( "passed\n PKCS#1 data sign : " );
|
|
|
|
sha1( rsa_plaintext, PT_LEN, sha1sum );
|
|
|
|
if( rsa_pkcs1_sign( &rsa, NULL, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20,
|
|
sha1sum, rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
printf( "passed\n PKCS#1 sig. verify: " );
|
|
|
|
if( rsa_pkcs1_verify( &rsa, RSA_PUBLIC, SIG_RSA_SHA1, 20,
|
|
sha1sum, rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
printf( "passed\n\n" );
|
|
#endif /* POLARSSL_SHA1_C */
|
|
|
|
rsa_free( &rsa );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|