mbedtls/tests/suites/test_suite_psa_crypto.function
Gilles Peskine 69d9817a66 cipher_alg_without_iv: generalized to also do decryption
Test set_iv/generate_iv after decrypt_setup. Test successful decryption.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
2022-04-20 20:58:04 +02:00

5566 lines
211 KiB
Plaintext

/* BEGIN_HEADER */
#include <stdint.h>
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#include "mbedtls/oid.h"
/* For MBEDTLS_CTR_DRBG_MAX_REQUEST, knowing that psa_generate_random()
* uses mbedtls_ctr_drbg internally. */
#include "mbedtls/ctr_drbg.h"
#include "psa/crypto.h"
#include "psa_crypto_slot_management.h"
#include "test/asn1_helpers.h"
#include "test/psa_crypto_helpers.h"
#include "test/psa_exercise_key.h"
/* If this comes up, it's a bug in the test code or in the test data. */
#define UNUSED 0xdeadbeef
/* Assert that an operation is (not) active.
* This serves as a proxy for checking if the operation is aborted. */
#define ASSERT_OPERATION_IS_ACTIVE( operation ) TEST_ASSERT( operation.id != 0 )
#define ASSERT_OPERATION_IS_INACTIVE( operation ) TEST_ASSERT( operation.id == 0 )
/** An invalid export length that will never be set by psa_export_key(). */
static const size_t INVALID_EXPORT_LENGTH = ~0U;
/** Test if a buffer contains a constant byte value.
*
* `mem_is_char(buffer, c, size)` is true after `memset(buffer, c, size)`.
*
* \param buffer Pointer to the beginning of the buffer.
* \param c Expected value of every byte.
* \param size Size of the buffer in bytes.
*
* \return 1 if the buffer is all-bits-zero.
* \return 0 if there is at least one nonzero byte.
*/
static int mem_is_char( void *buffer, unsigned char c, size_t size )
{
size_t i;
for( i = 0; i < size; i++ )
{
if( ( (unsigned char *) buffer )[i] != c )
return( 0 );
}
return( 1 );
}
#if defined(MBEDTLS_ASN1_WRITE_C)
/* Write the ASN.1 INTEGER with the value 2^(bits-1)+x backwards from *p. */
static int asn1_write_10x( unsigned char **p,
unsigned char *start,
size_t bits,
unsigned char x )
{
int ret;
int len = bits / 8 + 1;
if( bits == 0 )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( bits <= 8 && x >= 1 << ( bits - 1 ) )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( *p < start || *p - start < (ptrdiff_t) len )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
*p -= len;
( *p )[len-1] = x;
if( bits % 8 == 0 )
( *p )[1] |= 1;
else
( *p )[0] |= 1 << ( bits % 8 );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start,
MBEDTLS_ASN1_INTEGER ) );
return( len );
}
static int construct_fake_rsa_key( unsigned char *buffer,
size_t buffer_size,
unsigned char **p,
size_t bits,
int keypair )
{
size_t half_bits = ( bits + 1 ) / 2;
int ret;
int len = 0;
/* Construct something that looks like a DER encoding of
* as defined by PKCS#1 v2.2 (RFC 8017) section A.1.2:
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* otherPrimeInfos OtherPrimeInfos OPTIONAL
* }
* Or, for a public key, the same structure with only
* version, modulus and publicExponent.
*/
*p = buffer + buffer_size;
if( keypair )
{
MBEDTLS_ASN1_CHK_ADD( len, /* pq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dp */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* q */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* p != q to pass mbedtls sanity checks */
asn1_write_10x( p, buffer, half_bits, 3 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* d */
asn1_write_10x( p, buffer, bits, 1 ) );
}
MBEDTLS_ASN1_CHK_ADD( len, /* e = 65537 */
asn1_write_10x( p, buffer, 17, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* n */
asn1_write_10x( p, buffer, bits, 1 ) );
if( keypair )
MBEDTLS_ASN1_CHK_ADD( len, /* version = 0 */
mbedtls_asn1_write_int( p, buffer, 0 ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, buffer, len ) );
{
const unsigned char tag =
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, buffer, tag ) );
}
return( len );
}
#endif /* MBEDTLS_ASN1_WRITE_C */
int exercise_mac_setup( psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_mac_operation_t *operation,
psa_status_t *status )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_bytes, key_length, &key ) );
*status = psa_mac_sign_setup( operation, key, alg );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_mac_abort( operation ) );
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if( *status != PSA_SUCCESS )
{
TEST_EQUAL( psa_mac_sign_setup( operation, key, alg ), *status );
}
psa_destroy_key( key );
return( 1 );
exit:
psa_destroy_key( key );
return( 0 );
}
int exercise_cipher_setup( psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_cipher_operation_t *operation,
psa_status_t *status )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_bytes, key_length, &key ) );
*status = psa_cipher_encrypt_setup( operation, key, alg );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_cipher_abort( operation ) );
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if( *status != PSA_SUCCESS )
{
TEST_EQUAL( psa_cipher_encrypt_setup( operation, key, alg ),
*status );
}
psa_destroy_key( key );
return( 1 );
exit:
psa_destroy_key( key );
return( 0 );
}
static int test_operations_on_invalid_key( mbedtls_svc_key_id_t key )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make( 1, 0x6964 );
uint8_t buffer[1];
size_t length;
int ok = 0;
psa_set_key_id( &attributes, key_id );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, PSA_ALG_CTR );
psa_set_key_type( &attributes, PSA_KEY_TYPE_AES );
TEST_EQUAL( psa_get_key_attributes( key, &attributes ),
PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL(
MBEDTLS_SVC_KEY_ID_GET_KEY_ID( psa_get_key_id( &attributes ) ), 0 );
TEST_EQUAL(
MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( psa_get_key_id( &attributes ) ), 0 );
TEST_EQUAL( psa_get_key_lifetime( &attributes ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), 0 );
TEST_EQUAL( psa_get_key_type( &attributes ), 0 );
TEST_EQUAL( psa_get_key_bits( &attributes ), 0 );
TEST_EQUAL( psa_export_key( key, buffer, sizeof( buffer ), &length ),
PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL( psa_export_public_key( key,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_INVALID_HANDLE );
ok = 1;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
return( ok );
}
/* Assert that a key isn't reported as having a slot number. */
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
#define ASSERT_NO_SLOT_NUMBER( attributes ) \
do \
{ \
psa_key_slot_number_t ASSERT_NO_SLOT_NUMBER_slot_number; \
TEST_EQUAL( psa_get_key_slot_number( \
attributes, \
&ASSERT_NO_SLOT_NUMBER_slot_number ), \
PSA_ERROR_INVALID_ARGUMENT ); \
} \
while( 0 )
#else /* MBEDTLS_PSA_CRYPTO_SE_C */
#define ASSERT_NO_SLOT_NUMBER( attributes ) \
( (void) 0 )
#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
/* An overapproximation of the amount of storage needed for a key of the
* given type and with the given content. The API doesn't make it easy
* to find a good value for the size. The current implementation doesn't
* care about the value anyway. */
#define KEY_BITS_FROM_DATA( type, data ) \
( data )->len
typedef enum {
IMPORT_KEY = 0,
GENERATE_KEY = 1,
DERIVE_KEY = 2
} generate_method;
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void static_checks( )
{
size_t max_truncated_mac_size =
PSA_ALG_MAC_TRUNCATION_MASK >> PSA_MAC_TRUNCATION_OFFSET;
/* Check that the length for a truncated MAC always fits in the algorithm
* encoding. The shifted mask is the maximum truncated value. The
* untruncated algorithm may be one byte larger. */
TEST_ASSERT( PSA_MAC_MAX_SIZE <= 1 + max_truncated_mac_size );
#if defined(MBEDTLS_TEST_DEPRECATED)
/* Check deprecated constants. */
TEST_EQUAL( PSA_ERROR_UNKNOWN_ERROR, PSA_ERROR_GENERIC_ERROR );
TEST_EQUAL( PSA_ERROR_OCCUPIED_SLOT, PSA_ERROR_ALREADY_EXISTS );
TEST_EQUAL( PSA_ERROR_EMPTY_SLOT, PSA_ERROR_DOES_NOT_EXIST );
TEST_EQUAL( PSA_ERROR_INSUFFICIENT_CAPACITY, PSA_ERROR_INSUFFICIENT_DATA );
TEST_EQUAL( PSA_ERROR_TAMPERING_DETECTED, PSA_ERROR_CORRUPTION_DETECTED );
TEST_EQUAL( PSA_KEY_USAGE_SIGN, PSA_KEY_USAGE_SIGN_HASH );
TEST_EQUAL( PSA_KEY_USAGE_VERIFY, PSA_KEY_USAGE_VERIFY_HASH );
TEST_EQUAL( PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE, PSA_SIGNATURE_MAX_SIZE );
TEST_EQUAL( PSA_ECC_CURVE_SECP160K1, PSA_ECC_FAMILY_SECP_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP192K1, PSA_ECC_FAMILY_SECP_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP224K1, PSA_ECC_FAMILY_SECP_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP256K1, PSA_ECC_FAMILY_SECP_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP160R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP192R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP224R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP256R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP384R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP521R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP160R2, PSA_ECC_FAMILY_SECP_R2 );
TEST_EQUAL( PSA_ECC_CURVE_SECT163K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT233K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT239K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT283K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT409K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT571K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT163R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT193R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT233R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT283R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT409R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT571R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT163R2, PSA_ECC_FAMILY_SECT_R2 );
TEST_EQUAL( PSA_ECC_CURVE_SECT193R2, PSA_ECC_FAMILY_SECT_R2 );
TEST_EQUAL( PSA_ECC_CURVE_BRAINPOOL_P256R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1 );
TEST_EQUAL( PSA_ECC_CURVE_BRAINPOOL_P384R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1 );
TEST_EQUAL( PSA_ECC_CURVE_BRAINPOOL_P512R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1 );
TEST_EQUAL( PSA_ECC_CURVE_CURVE25519, PSA_ECC_FAMILY_MONTGOMERY );
TEST_EQUAL( PSA_ECC_CURVE_CURVE448, PSA_ECC_FAMILY_MONTGOMERY );
TEST_EQUAL( PSA_ECC_CURVE_SECP_K1, PSA_ECC_FAMILY_SECP_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP_R1, PSA_ECC_FAMILY_SECP_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECP_R2, PSA_ECC_FAMILY_SECP_R2 );
TEST_EQUAL( PSA_ECC_CURVE_SECT_K1, PSA_ECC_FAMILY_SECT_K1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT_R1, PSA_ECC_FAMILY_SECT_R1 );
TEST_EQUAL( PSA_ECC_CURVE_SECT_R2, PSA_ECC_FAMILY_SECT_R2 );
TEST_EQUAL( PSA_ECC_CURVE_BRAINPOOL_P_R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1 );
TEST_EQUAL( PSA_ECC_CURVE_MONTGOMERY, PSA_ECC_FAMILY_MONTGOMERY );
TEST_EQUAL( PSA_DH_GROUP_FFDHE2048, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_FFDHE3072, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_FFDHE4096, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_FFDHE6144, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_FFDHE8192, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_RFC7919, PSA_DH_FAMILY_RFC7919 );
TEST_EQUAL( PSA_DH_GROUP_CUSTOM, PSA_DH_FAMILY_CUSTOM );
#endif
}
/* END_CASE */
/* BEGIN_CASE */
void import_with_policy( int type_arg,
int usage_arg, int alg_arg,
int expected_status_arg )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
const uint8_t key_material[16] = {0};
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_type( &attributes, type );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
status = psa_import_key( &attributes,
key_material, sizeof( key_material ),
&key );
TEST_EQUAL( status, expected_status );
if( status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_usage_flags( &got_attributes ),
mbedtls_test_update_key_usage_flags( usage ) );
TEST_EQUAL( psa_get_key_algorithm( &got_attributes ), alg );
ASSERT_NO_SLOT_NUMBER( &got_attributes );
PSA_ASSERT( psa_destroy_key( key ) );
test_operations_on_invalid_key( key );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_with_data( data_t *data, int type_arg,
int attr_bits_arg,
int expected_status_arg )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t attr_bits = attr_bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_type( &attributes, type );
psa_set_key_bits( &attributes, attr_bits );
status = psa_import_key( &attributes, data->x, data->len, &key );
TEST_EQUAL( status, expected_status );
if( status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
if( attr_bits != 0 )
TEST_EQUAL( attr_bits, psa_get_key_bits( &got_attributes ) );
ASSERT_NO_SLOT_NUMBER( &got_attributes );
PSA_ASSERT( psa_destroy_key( key ) );
test_operations_on_invalid_key( key );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_large_key( int type_arg, int byte_size_arg,
int expected_status_arg )
{
psa_key_type_t type = type_arg;
size_t byte_size = byte_size_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_status = expected_status_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
uint8_t *buffer = NULL;
size_t buffer_size = byte_size + 1;
size_t n;
/* Skip the test case if the target running the test cannot
* accomodate large keys due to heap size constraints */
ASSERT_ALLOC_WEAK( buffer, buffer_size );
memset( buffer, 'K', byte_size );
PSA_ASSERT( psa_crypto_init( ) );
/* Try importing the key */
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_type( &attributes, type );
status = psa_import_key( &attributes, buffer, byte_size, &key );
TEST_ASSUME( status != PSA_ERROR_INSUFFICIENT_MEMORY );
TEST_EQUAL( status, expected_status );
if( status == PSA_SUCCESS )
{
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
TEST_EQUAL( psa_get_key_type( &attributes ), type );
TEST_EQUAL( psa_get_key_bits( &attributes ),
PSA_BYTES_TO_BITS( byte_size ) );
ASSERT_NO_SLOT_NUMBER( &attributes );
memset( buffer, 0, byte_size + 1 );
PSA_ASSERT( psa_export_key( key, buffer, byte_size, &n ) );
for( n = 0; n < byte_size; n++ )
TEST_EQUAL( buffer[n], 'K' );
for( n = byte_size; n < buffer_size; n++ )
TEST_EQUAL( buffer[n], 0 );
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
mbedtls_free( buffer );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ASN1_WRITE_C */
void import_rsa_made_up( int bits_arg, int keypair, int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
psa_key_type_t type =
keypair ? PSA_KEY_TYPE_RSA_KEY_PAIR : PSA_KEY_TYPE_RSA_PUBLIC_KEY;
size_t buffer_size = /* Slight overapproximations */
keypair ? bits * 9 / 16 + 80 : bits / 8 + 20;
unsigned char *buffer = NULL;
unsigned char *p;
int ret;
size_t length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
ASSERT_ALLOC( buffer, buffer_size );
TEST_ASSERT( ( ret = construct_fake_rsa_key( buffer, buffer_size, &p,
bits, keypair ) ) >= 0 );
length = ret;
/* Try importing the key */
psa_set_key_type( &attributes, type );
status = psa_import_key( &attributes, p, length, &key );
TEST_EQUAL( status, expected_status );
if( status == PSA_SUCCESS )
PSA_ASSERT( psa_destroy_key( key ) );
exit:
mbedtls_free( buffer );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export( data_t *data,
int type_arg,
int usage_arg, int alg_arg,
int expected_bits,
int export_size_delta,
int expected_export_status_arg,
int canonical_input )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
unsigned char *reexported = NULL;
size_t export_size;
size_t exported_length = INVALID_EXPORT_LENGTH;
size_t reexported_length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
export_size = (ptrdiff_t) data->len + export_size_delta;
ASSERT_ALLOC( exported, export_size );
if( ! canonical_input )
ASSERT_ALLOC( reexported, export_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage_arg );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, data->x, data->len, &key ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), (size_t) expected_bits );
ASSERT_NO_SLOT_NUMBER( &got_attributes );
/* Export the key */
status = psa_export_key( key, exported, export_size, &exported_length );
TEST_EQUAL( status, expected_export_status );
/* The exported length must be set by psa_export_key() to a value between 0
* and export_size. On errors, the exported length must be 0. */
TEST_ASSERT( exported_length != INVALID_EXPORT_LENGTH );
TEST_ASSERT( status == PSA_SUCCESS || exported_length == 0 );
TEST_ASSERT( exported_length <= export_size );
TEST_ASSERT( mem_is_char( exported + exported_length, 0,
export_size - exported_length ) );
if( status != PSA_SUCCESS )
{
TEST_EQUAL( exported_length, 0 );
goto destroy;
}
/* Run sanity checks on the exported key. For non-canonical inputs,
* this validates the canonical representations. For canonical inputs,
* this doesn't directly validate the implementation, but it still helps
* by cross-validating the test data with the sanity check code. */
if( ! mbedtls_test_psa_exercise_key( key, usage_arg, 0 ) )
goto exit;
if( canonical_input )
ASSERT_COMPARE( data->x, data->len, exported, exported_length );
else
{
mbedtls_svc_key_id_t key2 = MBEDTLS_SVC_KEY_ID_INIT;
PSA_ASSERT( psa_import_key( &attributes, exported, exported_length,
&key2 ) );
PSA_ASSERT( psa_export_key( key2,
reexported,
export_size,
&reexported_length ) );
ASSERT_COMPARE( exported, exported_length,
reexported, reexported_length );
PSA_ASSERT( psa_destroy_key( key2 ) );
}
TEST_ASSERT( exported_length <=
PSA_EXPORT_KEY_OUTPUT_SIZE( type,
psa_get_key_bits( &got_attributes ) ) );
TEST_ASSERT( exported_length <= PSA_EXPORT_KEY_PAIR_MAX_SIZE );
destroy:
/* Destroy the key */
PSA_ASSERT( psa_destroy_key( key ) );
test_operations_on_invalid_key( key );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
mbedtls_free( exported );
mbedtls_free( reexported );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export_public_key( data_t *data,
int type_arg,
int alg_arg,
int export_size_delta,
int expected_export_status_arg,
data_t *expected_public_key )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
size_t export_size = expected_public_key->len + export_size_delta;
size_t exported_length = INVALID_EXPORT_LENGTH;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, data->x, data->len, &key ) );
/* Export the public key */
ASSERT_ALLOC( exported, export_size );
status = psa_export_public_key( key,
exported, export_size,
&exported_length );
TEST_EQUAL( status, expected_export_status );
if( status == PSA_SUCCESS )
{
psa_key_type_t public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR( type );
size_t bits;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
bits = psa_get_key_bits( &attributes );
TEST_ASSERT( expected_public_key->len <=
PSA_EXPORT_KEY_OUTPUT_SIZE( public_type, bits ) );
TEST_ASSERT( expected_public_key->len <=
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE( public_type, bits ) );
TEST_ASSERT( expected_public_key->len <=
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE );
ASSERT_COMPARE( expected_public_key->x, expected_public_key->len,
exported, exported_length );
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( exported );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_and_exercise_key( data_t *data,
int type_arg,
int bits_arg,
int alg_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = mbedtls_test_psa_usage_to_exercise( type, alg );
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, data->x, data->len, &key ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), bits );
/* Do something with the key according to its type and permitted usage. */
if( ! mbedtls_test_psa_exercise_key( key, usage, alg ) )
goto exit;
PSA_ASSERT( psa_destroy_key( key ) );
test_operations_on_invalid_key( key );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void effective_key_attributes( int type_arg, int expected_type_arg,
int bits_arg, int expected_bits_arg,
int usage_arg, int expected_usage_arg,
int alg_arg, int expected_alg_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = type_arg;
psa_key_type_t expected_key_type = expected_type_arg;
size_t bits = bits_arg;
size_t expected_bits = expected_bits_arg;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t expected_alg = expected_alg_arg;
psa_key_usage_t usage = usage_arg;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
psa_set_key_bits( &attributes, bits );
PSA_ASSERT( psa_generate_key( &attributes, &key ) );
psa_reset_key_attributes( &attributes );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
TEST_EQUAL( psa_get_key_type( &attributes ), expected_key_type );
TEST_EQUAL( psa_get_key_bits( &attributes ), expected_bits );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), expected_usage );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), expected_alg );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void check_key_policy( int type_arg, int bits_arg,
int usage_arg, int alg_arg )
{
test_effective_key_attributes( type_arg, type_arg, bits_arg, bits_arg,
usage_arg,
mbedtls_test_update_key_usage_flags( usage_arg ),
alg_arg, alg_arg );
goto exit;
}
/* END_CASE */
/* BEGIN_CASE */
void key_attributes_init( )
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_key_attributes_t func = psa_key_attributes_init( );
psa_key_attributes_t init = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t zero;
memset( &zero, 0, sizeof( zero ) );
TEST_EQUAL( psa_get_key_lifetime( &func ), PSA_KEY_LIFETIME_VOLATILE );
TEST_EQUAL( psa_get_key_lifetime( &init ), PSA_KEY_LIFETIME_VOLATILE );
TEST_EQUAL( psa_get_key_lifetime( &zero ), PSA_KEY_LIFETIME_VOLATILE );
TEST_EQUAL( psa_get_key_type( &func ), 0 );
TEST_EQUAL( psa_get_key_type( &init ), 0 );
TEST_EQUAL( psa_get_key_type( &zero ), 0 );
TEST_EQUAL( psa_get_key_bits( &func ), 0 );
TEST_EQUAL( psa_get_key_bits( &init ), 0 );
TEST_EQUAL( psa_get_key_bits( &zero ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &func ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &init ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &zero ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &func ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &init ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &zero ), 0 );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_key_policy( int policy_usage_arg,
int policy_alg_arg,
int key_type_arg,
data_t *key_data,
int exercise_alg_arg,
int expected_status_sign_arg,
int expected_status_verify_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t policy_alg = policy_alg_arg;
psa_algorithm_t exercise_alg = exercise_alg_arg;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
psa_status_t expected_status_sign = expected_status_sign_arg;
psa_status_t expected_status_verify = expected_status_verify_arg;
unsigned char mac[PSA_MAC_MAX_SIZE];
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ),
mbedtls_test_update_key_usage_flags( policy_usage ) );
status = psa_mac_sign_setup( &operation, key, exercise_alg );
TEST_EQUAL( status, expected_status_sign );
/* Calculate the MAC, one-shot case. */
uint8_t input[128] = {0};
size_t mac_len;
TEST_EQUAL( psa_mac_compute( key, exercise_alg,
input, 128,
mac, PSA_MAC_MAX_SIZE, &mac_len ),
expected_status_sign );
/* Verify correct MAC, one-shot case. */
status = psa_mac_verify( key, exercise_alg, input, 128,
mac, mac_len );
if( expected_status_sign != PSA_SUCCESS && expected_status_verify == PSA_SUCCESS )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, expected_status_verify );
psa_mac_abort( &operation );
memset( mac, 0, sizeof( mac ) );
status = psa_mac_verify_setup( &operation, key, exercise_alg );
TEST_EQUAL( status, expected_status_verify );
exit:
psa_mac_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_key_policy( int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Check if no key usage flag implication is done */
TEST_EQUAL( policy_usage,
mbedtls_test_update_key_usage_flags( policy_usage ) );
status = psa_cipher_encrypt_setup( &operation, key, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
psa_cipher_abort( &operation );
status = psa_cipher_decrypt_setup( &operation, key, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_cipher_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_key_policy( int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int nonce_length_arg,
int tag_length_arg,
int exercise_alg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
unsigned char nonce[16] = {0};
size_t nonce_length = nonce_length_arg;
unsigned char tag[16];
size_t tag_length = tag_length_arg;
size_t output_length;
TEST_ASSERT( nonce_length <= sizeof( nonce ) );
TEST_ASSERT( tag_length <= sizeof( tag ) );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Check if no key usage implication is done */
TEST_EQUAL( policy_usage,
mbedtls_test_update_key_usage_flags( policy_usage ) );
status = psa_aead_encrypt( key, exercise_alg,
nonce, nonce_length,
NULL, 0,
NULL, 0,
tag, tag_length,
&output_length );
if( ( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
TEST_EQUAL( status, expected_status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
memset( tag, 0, sizeof( tag ) );
status = psa_aead_decrypt( key, exercise_alg,
nonce, nonce_length,
NULL, 0,
tag, tag_length,
NULL, 0,
&output_length );
if( ( policy_usage & PSA_KEY_USAGE_DECRYPT ) == 0 )
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
else if( expected_status == PSA_SUCCESS )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, expected_status );
exit:
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encryption_key_policy( int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
size_t key_bits;
size_t buffer_length;
unsigned char *buffer = NULL;
size_t output_length;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Check if no key usage implication is done */
TEST_EQUAL( policy_usage,
mbedtls_test_update_key_usage_flags( policy_usage ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
buffer_length = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits,
exercise_alg );
ASSERT_ALLOC( buffer, buffer_length );
status = psa_asymmetric_encrypt( key, exercise_alg,
NULL, 0,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
if( buffer_length != 0 )
memset( buffer, 0, buffer_length );
status = psa_asymmetric_decrypt( key, exercise_alg,
buffer, buffer_length,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_PADDING );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
mbedtls_free( buffer );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_signature_key_policy( int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg,
int payload_length_arg,
int expected_usage_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_status_t status;
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
/* If `payload_length_arg > 0`, `exercise_alg` is supposed to be
* compatible with the policy and `payload_length_arg` is supposed to be
* a valid input length to sign. If `payload_length_arg <= 0`,
* `exercise_alg` is supposed to be forbidden by the policy. */
int compatible_alg = payload_length_arg > 0;
size_t payload_length = compatible_alg ? payload_length_arg : 0;
unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length;
/* Check if all implicit usage flags are deployed
in the expected usage flags. */
TEST_EQUAL( expected_usage,
mbedtls_test_update_key_usage_flags( policy_usage ) );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), expected_usage );
status = psa_sign_hash( key, exercise_alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length );
if( compatible_alg && ( expected_usage & PSA_KEY_USAGE_SIGN_HASH ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
memset( signature, 0, sizeof( signature ) );
status = psa_verify_hash( key, exercise_alg,
payload, payload_length,
signature, sizeof( signature ) );
if( compatible_alg && ( expected_usage & PSA_KEY_USAGE_VERIFY_HASH ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
if( PSA_ALG_IS_SIGN_HASH( exercise_alg ) &&
PSA_ALG_IS_HASH( PSA_ALG_SIGN_GET_HASH( exercise_alg ) ) )
{
status = psa_sign_message( key, exercise_alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length );
if( compatible_alg && ( expected_usage & PSA_KEY_USAGE_SIGN_MESSAGE ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
memset( signature, 0, sizeof( signature ) );
status = psa_verify_message( key, exercise_alg,
payload, payload_length,
signature, sizeof( signature ) );
if( compatible_alg && ( expected_usage & PSA_KEY_USAGE_VERIFY_MESSAGE ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
}
exit:
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_key_derivation_setup( &operation, exercise_alg ) );
if( PSA_ALG_IS_TLS12_PRF( exercise_alg ) ||
PSA_ALG_IS_TLS12_PSK_TO_MS( exercise_alg ) )
{
PSA_ASSERT( psa_key_derivation_input_bytes(
&operation,
PSA_KEY_DERIVATION_INPUT_SEED,
(const uint8_t*) "", 0) );
}
status = psa_key_derivation_input_key( &operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void agreement_key_policy( int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_key_derivation_setup( &operation, exercise_alg ) );
status = mbedtls_test_psa_key_agreement_with_self( &operation, key );
TEST_EQUAL( status, expected_status );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy_alg2( int key_type_arg, data_t *key_data,
int usage_arg, int alg_arg, int alg2_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t usage = usage_arg;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t alg2 = alg2_arg;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_enrollment_algorithm( &attributes, alg2 );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Update the usage flags to obtain implicit usage flags */
usage = mbedtls_test_update_key_usage_flags( usage );
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_usage_flags( &got_attributes ), usage );
TEST_EQUAL( psa_get_key_algorithm( &got_attributes ), alg );
TEST_EQUAL( psa_get_key_enrollment_algorithm( &got_attributes ), alg2 );
if( ! mbedtls_test_psa_exercise_key( key, usage, alg ) )
goto exit;
if( ! mbedtls_test_psa_exercise_key( key, usage, alg2 ) )
goto exit;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void raw_agreement_key_policy( int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, policy_usage );
psa_set_key_algorithm( &attributes, policy_alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
status = mbedtls_test_psa_raw_key_agreement_with_self( exercise_alg, key );
TEST_EQUAL( status, expected_status );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void copy_success( int source_usage_arg,
int source_alg_arg, int source_alg2_arg,
int type_arg, data_t *material,
int copy_attributes,
int target_usage_arg,
int target_alg_arg, int target_alg2_arg,
int expected_usage_arg,
int expected_alg_arg, int expected_alg2_arg )
{
psa_key_attributes_t source_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t target_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_algorithm_t expected_alg = expected_alg_arg;
psa_algorithm_t expected_alg2 = expected_alg2_arg;
mbedtls_svc_key_id_t source_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t target_key = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t *export_buffer = NULL;
PSA_ASSERT( psa_crypto_init( ) );
/* Prepare the source key. */
psa_set_key_usage_flags( &source_attributes, source_usage_arg );
psa_set_key_algorithm( &source_attributes, source_alg_arg );
psa_set_key_enrollment_algorithm( &source_attributes, source_alg2_arg );
psa_set_key_type( &source_attributes, type_arg );
PSA_ASSERT( psa_import_key( &source_attributes,
material->x, material->len,
&source_key ) );
PSA_ASSERT( psa_get_key_attributes( source_key, &source_attributes ) );
/* Prepare the target attributes. */
if( copy_attributes )
{
target_attributes = source_attributes;
/* Set volatile lifetime to reset the key identifier to 0. */
psa_set_key_lifetime( &target_attributes, PSA_KEY_LIFETIME_VOLATILE );
}
if( target_usage_arg != -1 )
psa_set_key_usage_flags( &target_attributes, target_usage_arg );
if( target_alg_arg != -1 )
psa_set_key_algorithm( &target_attributes, target_alg_arg );
if( target_alg2_arg != -1 )
psa_set_key_enrollment_algorithm( &target_attributes, target_alg2_arg );
/* Copy the key. */
PSA_ASSERT( psa_copy_key( source_key,
&target_attributes, &target_key ) );
/* Destroy the source to ensure that this doesn't affect the target. */
PSA_ASSERT( psa_destroy_key( source_key ) );
/* Test that the target slot has the expected content and policy. */
PSA_ASSERT( psa_get_key_attributes( target_key, &target_attributes ) );
TEST_EQUAL( psa_get_key_type( &source_attributes ),
psa_get_key_type( &target_attributes ) );
TEST_EQUAL( psa_get_key_bits( &source_attributes ),
psa_get_key_bits( &target_attributes ) );
TEST_EQUAL( expected_usage, psa_get_key_usage_flags( &target_attributes ) );
TEST_EQUAL( expected_alg, psa_get_key_algorithm( &target_attributes ) );
TEST_EQUAL( expected_alg2,
psa_get_key_enrollment_algorithm( &target_attributes ) );
if( expected_usage & PSA_KEY_USAGE_EXPORT )
{
size_t length;
ASSERT_ALLOC( export_buffer, material->len );
PSA_ASSERT( psa_export_key( target_key, export_buffer,
material->len, &length ) );
ASSERT_COMPARE( material->x, material->len,
export_buffer, length );
}
if( ! mbedtls_test_psa_exercise_key( target_key, expected_usage, expected_alg ) )
goto exit;
if( ! mbedtls_test_psa_exercise_key( target_key, expected_usage, expected_alg2 ) )
goto exit;
PSA_ASSERT( psa_destroy_key( target_key ) );
exit:
/*
* Source and target key attributes may have been returned by
* psa_get_key_attributes() thus reset them as required.
*/
psa_reset_key_attributes( &source_attributes );
psa_reset_key_attributes( &target_attributes );
PSA_DONE( );
mbedtls_free( export_buffer );
}
/* END_CASE */
/* BEGIN_CASE */
void copy_fail( int source_usage_arg,
int source_alg_arg, int source_alg2_arg,
int type_arg, data_t *material,
int target_type_arg, int target_bits_arg,
int target_usage_arg,
int target_alg_arg, int target_alg2_arg,
int target_id_arg, int target_lifetime_arg,
int expected_status_arg )
{
psa_key_attributes_t source_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t target_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t source_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t target_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make( 1, target_id_arg );
PSA_ASSERT( psa_crypto_init( ) );
/* Prepare the source key. */
psa_set_key_usage_flags( &source_attributes, source_usage_arg );
psa_set_key_algorithm( &source_attributes, source_alg_arg );
psa_set_key_enrollment_algorithm( &source_attributes, source_alg2_arg );
psa_set_key_type( &source_attributes, type_arg );
PSA_ASSERT( psa_import_key( &source_attributes,
material->x, material->len,
&source_key ) );
/* Prepare the target attributes. */
psa_set_key_id( &target_attributes, key_id );
psa_set_key_lifetime( &target_attributes, target_lifetime_arg );
psa_set_key_type( &target_attributes, target_type_arg );
psa_set_key_bits( &target_attributes, target_bits_arg );
psa_set_key_usage_flags( &target_attributes, target_usage_arg );
psa_set_key_algorithm( &target_attributes, target_alg_arg );
psa_set_key_enrollment_algorithm( &target_attributes, target_alg2_arg );
/* Try to copy the key. */
TEST_EQUAL( psa_copy_key( source_key,
&target_attributes, &target_key ),
expected_status_arg );
PSA_ASSERT( psa_destroy_key( source_key ) );
exit:
psa_reset_key_attributes( &source_attributes );
psa_reset_key_attributes( &target_attributes );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_operation_init( )
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_hash_operation_t func = psa_hash_operation_init( );
psa_hash_operation_t init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized hash operation should not be usable. */
TEST_EQUAL( psa_hash_update( &func, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_update( &init, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_update( &zero, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
/* A default hash operation should be abortable without error. */
PSA_ASSERT( psa_hash_abort( &func ) );
PSA_ASSERT( psa_hash_abort( &init ) );
PSA_ASSERT( psa_hash_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_setup( int alg_arg,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
status = psa_hash_setup( &operation, alg );
TEST_EQUAL( status, expected_status );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_hash_abort( &operation ) );
/* If setup failed, reproduce the failure, so as to
* test the resulting state of the operation object. */
if( status != PSA_SUCCESS )
TEST_EQUAL( psa_hash_setup( &operation, alg ), status );
/* Now the operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_HASH_ALG)
PSA_ASSERT( psa_hash_setup( &operation, KNOWN_SUPPORTED_HASH_ALG ) );
PSA_ASSERT( psa_hash_abort( &operation ) );
#endif
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compute_fail( int alg_arg, data_t *input,
int output_size_arg, int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
uint8_t *output = NULL;
size_t output_size = output_size_arg;
size_t output_length = INVALID_EXPORT_LENGTH;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
ASSERT_ALLOC( output, output_size );
PSA_ASSERT( psa_crypto_init( ) );
status = psa_hash_compute( alg, input->x, input->len,
output, output_size, &output_length );
TEST_EQUAL( status, expected_status );
TEST_ASSERT( output_length <= output_size );
exit:
mbedtls_free( output );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compare_fail( int alg_arg, data_t *input,
data_t *reference_hash,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
status = psa_hash_compare( alg, input->x, input->len,
reference_hash->x, reference_hash->len );
TEST_EQUAL( status, expected_status );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compute_compare( int alg_arg, data_t *input,
data_t *expected_output )
{
psa_algorithm_t alg = alg_arg;
uint8_t output[PSA_HASH_MAX_SIZE + 1];
size_t output_length = INVALID_EXPORT_LENGTH;
size_t i;
PSA_ASSERT( psa_crypto_init( ) );
/* Compute with tight buffer */
PSA_ASSERT( psa_hash_compute( alg, input->x, input->len,
output, PSA_HASH_LENGTH( alg ),
&output_length ) );
TEST_EQUAL( output_length, PSA_HASH_LENGTH( alg ) );
ASSERT_COMPARE( output, output_length,
expected_output->x, expected_output->len );
/* Compute with larger buffer */
PSA_ASSERT( psa_hash_compute( alg, input->x, input->len,
output, sizeof( output ),
&output_length ) );
TEST_EQUAL( output_length, PSA_HASH_LENGTH( alg ) );
ASSERT_COMPARE( output, output_length,
expected_output->x, expected_output->len );
/* Compare with correct hash */
PSA_ASSERT( psa_hash_compare( alg, input->x, input->len,
output, output_length ) );
/* Compare with trailing garbage */
TEST_EQUAL( psa_hash_compare( alg, input->x, input->len,
output, output_length + 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Compare with truncated hash */
TEST_EQUAL( psa_hash_compare( alg, input->x, input->len,
output, output_length - 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Compare with corrupted value */
for( i = 0; i < output_length; i++ )
{
mbedtls_test_set_step( i );
output[i] ^= 1;
TEST_EQUAL( psa_hash_compare( alg, input->x, input->len,
output, output_length ),
PSA_ERROR_INVALID_SIGNATURE );
output[i] ^= 1;
}
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_bad_order( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char input[] = "";
/* SHA-256 hash of an empty string */
const unsigned char valid_hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 };
unsigned char hash[sizeof(valid_hash)] = { 0 };
size_t hash_len;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* Call setup twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_hash_setup( &operation, alg ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_hash_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_hash_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Check that update calls abort on error. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
operation.id = UINT_MAX;
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_hash_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_hash_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call update after finish. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify without calling setup beforehand. */
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify after finish. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
PSA_ASSERT( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish without calling setup beforehand. */
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish after calling verify. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_verify_bad_args( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
/* SHA-256 hash of an empty string with 2 extra bytes (0xaa and 0xbb)
* appended to it */
unsigned char hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, 0xaa, 0xbb };
size_t expected_size = PSA_HASH_LENGTH( alg );
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* psa_hash_verify with a smaller hash than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_hash_verify( &operation, hash, expected_size - 1 ),
PSA_ERROR_INVALID_SIGNATURE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_hash_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* psa_hash_verify with a non-matching hash */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_verify( &operation, hash + 1, expected_size ),
PSA_ERROR_INVALID_SIGNATURE );
/* psa_hash_verify with a hash longer than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_verify( &operation, hash, sizeof( hash ) ),
PSA_ERROR_INVALID_SIGNATURE );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_finish_bad_args( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
size_t expected_size = PSA_HASH_LENGTH( alg );
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
/* psa_hash_finish with a smaller hash buffer than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, expected_size - 1, &hash_len ),
PSA_ERROR_BUFFER_TOO_SMALL );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_clone_source_state( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_source = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_hash_setup( &op_source, alg ) );
PSA_ASSERT( psa_hash_setup( &op_setup, alg ) );
PSA_ASSERT( psa_hash_setup( &op_finished, alg ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_setup( &op_aborted, alg ) );
PSA_ASSERT( psa_hash_abort( &op_aborted ) );
TEST_EQUAL( psa_hash_clone( &op_source, &op_setup ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_clone( &op_source, &op_init ) );
PSA_ASSERT( psa_hash_finish( &op_init,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_clone( &op_source, &op_finished ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_clone( &op_source, &op_aborted ) );
PSA_ASSERT( psa_hash_finish( &op_aborted,
hash, sizeof( hash ), &hash_len ) );
exit:
psa_hash_abort( &op_source );
psa_hash_abort( &op_init );
psa_hash_abort( &op_setup );
psa_hash_abort( &op_finished );
psa_hash_abort( &op_aborted );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_clone_target_state( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_target = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_hash_setup( &op_setup, alg ) );
PSA_ASSERT( psa_hash_setup( &op_finished, alg ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_setup( &op_aborted, alg ) );
PSA_ASSERT( psa_hash_abort( &op_aborted ) );
PSA_ASSERT( psa_hash_clone( &op_setup, &op_target ) );
PSA_ASSERT( psa_hash_finish( &op_target,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_clone( &op_init, &op_target ), PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_clone( &op_finished, &op_target ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_clone( &op_aborted, &op_target ),
PSA_ERROR_BAD_STATE );
exit:
psa_hash_abort( &op_target );
psa_hash_abort( &op_init );
psa_hash_abort( &op_setup );
psa_hash_abort( &op_finished );
psa_hash_abort( &op_aborted );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_operation_init( )
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_mac_operation_t func = psa_mac_operation_init( );
psa_mac_operation_t init = PSA_MAC_OPERATION_INIT;
psa_mac_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized MAC operation should not be usable. */
TEST_EQUAL( psa_mac_update( &func,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_mac_update( &init,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_mac_update( &zero,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
/* A default MAC operation should be abortable without error. */
PSA_ASSERT( psa_mac_abort( &func ) );
PSA_ASSERT( psa_mac_abort( &init ) );
PSA_ASSERT( psa_mac_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
#if defined(KNOWN_SUPPORTED_MAC_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT( psa_crypto_init( ) );
if( ! exercise_mac_setup( key_type, key->x, key->len, alg,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, expected_status );
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_MAC_ALG)
if( ! exercise_mac_setup( KNOWN_SUPPORTED_MAC_KEY_TYPE,
smoke_test_key_data,
sizeof( smoke_test_key_data ),
KNOWN_SUPPORTED_MAC_ALG,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, PSA_SUCCESS );
#endif
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_KEY_TYPE_HMAC:PSA_WANT_ALG_HMAC:PSA_WANT_ALG_SHA_256 */
void mac_bad_order( )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = PSA_KEY_TYPE_HMAC;
psa_algorithm_t alg = PSA_ALG_HMAC(PSA_ALG_SHA_256);
const uint8_t key_data[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa };
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
uint8_t sign_mac[PSA_MAC_MAX_SIZE + 10] = { 0 };
size_t sign_mac_length = 0;
const uint8_t input[] = { 0xbb, 0xbb, 0xbb, 0xbb };
const uint8_t verify_mac[] = {
0x74, 0x65, 0x93, 0x8c, 0xeb, 0x1d, 0xb3, 0x76, 0x5a, 0x38, 0xe7, 0xdd,
0x85, 0xc5, 0xad, 0x4f, 0x07, 0xe7, 0xd5, 0xb2, 0x64, 0xf0, 0x1a, 0x1a,
0x2c, 0xf9, 0x18, 0xca, 0x59, 0x7e, 0x5d, 0xf6 };
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data, sizeof( key_data ),
&key ) );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call sign finish without calling setup beforehand. */
TEST_EQUAL( psa_mac_sign_finish( &operation, sign_mac, sizeof( sign_mac ),
&sign_mac_length),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call verify finish without calling setup beforehand. */
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call setup twice in a row. */
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_mac_sign_setup( &operation, key, alg ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_mac_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call update after sign finish. */
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ) );
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call update after verify finish. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ) );
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call sign finish twice in a row. */
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ) );
TEST_EQUAL( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call verify finish twice in a row. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Setup sign but try verify. */
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_mac_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Setup verify but try sign. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_mac_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_destroy_key( key ) );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_sign( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *actual_mac = NULL;
size_t mac_buffer_size =
PSA_MAC_LENGTH( key_type, PSA_BYTES_TO_BITS( key_data->len ), alg );
size_t mac_length = 0;
const size_t output_sizes_to_test[] = {
0,
1,
expected_mac->len - 1,
expected_mac->len,
expected_mac->len + 1,
};
TEST_ASSERT( mac_buffer_size <= PSA_MAC_MAX_SIZE );
/* We expect PSA_MAC_LENGTH to be exact. */
TEST_ASSERT( expected_mac->len == mac_buffer_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
for( size_t i = 0; i < ARRAY_LENGTH( output_sizes_to_test ); i++ )
{
const size_t output_size = output_sizes_to_test[i];
psa_status_t expected_status =
( output_size >= expected_mac->len ? PSA_SUCCESS :
PSA_ERROR_BUFFER_TOO_SMALL );
mbedtls_test_set_step( output_size );
ASSERT_ALLOC( actual_mac, output_size );
/* Calculate the MAC, one-shot case. */
TEST_EQUAL( psa_mac_compute( key, alg,
input->x, input->len,
actual_mac, output_size, &mac_length ),
expected_status );
if( expected_status == PSA_SUCCESS )
{
ASSERT_COMPARE( expected_mac->x, expected_mac->len,
actual_mac, mac_length );
}
if( output_size > 0 )
memset( actual_mac, 0, output_size );
/* Calculate the MAC, multi-part case. */
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
TEST_EQUAL( psa_mac_sign_finish( &operation,
actual_mac, output_size,
&mac_length ),
expected_status );
PSA_ASSERT( psa_mac_abort( &operation ) );
if( expected_status == PSA_SUCCESS )
{
ASSERT_COMPARE( expected_mac->x, expected_mac->len,
actual_mac, mac_length );
}
mbedtls_free( actual_mac );
actual_mac = NULL;
}
exit:
psa_mac_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
mbedtls_free( actual_mac );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_verify( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *perturbed_mac = NULL;
TEST_ASSERT( expected_mac->len <= PSA_MAC_MAX_SIZE );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Verify correct MAC, one-shot case. */
PSA_ASSERT( psa_mac_verify( key, alg, input->x, input->len,
expected_mac->x, expected_mac->len ) );
/* Verify correct MAC, multi-part case. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
expected_mac->x,
expected_mac->len ) );
/* Test a MAC that's too short, one-shot case. */
TEST_EQUAL( psa_mac_verify( key, alg,
input->x, input->len,
expected_mac->x,
expected_mac->len - 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Test a MAC that's too short, multi-part case. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
expected_mac->x,
expected_mac->len - 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Test a MAC that's too long, one-shot case. */
ASSERT_ALLOC( perturbed_mac, expected_mac->len + 1 );
memcpy( perturbed_mac, expected_mac->x, expected_mac->len );
TEST_EQUAL( psa_mac_verify( key, alg,
input->x, input->len,
perturbed_mac, expected_mac->len + 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Test a MAC that's too long, multi-part case. */
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
perturbed_mac,
expected_mac->len + 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* Test changing one byte. */
for( size_t i = 0; i < expected_mac->len; i++ )
{
mbedtls_test_set_step( i );
perturbed_mac[i] ^= 1;
TEST_EQUAL( psa_mac_verify( key, alg,
input->x, input->len,
perturbed_mac, expected_mac->len ),
PSA_ERROR_INVALID_SIGNATURE );
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
perturbed_mac,
expected_mac->len ),
PSA_ERROR_INVALID_SIGNATURE );
perturbed_mac[i] ^= 1;
}
exit:
psa_mac_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
mbedtls_free( perturbed_mac );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_operation_init( )
{
const uint8_t input[1] = { 0 };
unsigned char output[1] = { 0 };
size_t output_length;
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_cipher_operation_t func = psa_cipher_operation_init( );
psa_cipher_operation_t init = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized cipher operation should not be usable. */
TEST_EQUAL( psa_cipher_update( &func,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_cipher_update( &init,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_cipher_update( &zero,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
/* A default cipher operation should be abortable without error. */
PSA_ASSERT( psa_cipher_abort( &func ) );
PSA_ASSERT( psa_cipher_abort( &init ) );
PSA_ASSERT( psa_cipher_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
#if defined(KNOWN_SUPPORTED_CIPHER_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT( psa_crypto_init( ) );
if( ! exercise_cipher_setup( key_type, key->x, key->len, alg,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, expected_status );
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_CIPHER_ALG)
if( ! exercise_cipher_setup( KNOWN_SUPPORTED_CIPHER_KEY_TYPE,
smoke_test_key_data,
sizeof( smoke_test_key_data ),
KNOWN_SUPPORTED_CIPHER_ALG,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, PSA_SUCCESS );
#endif
exit:
psa_cipher_abort( &operation );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_KEY_TYPE_AES:PSA_WANT_ALG_CBC_PKCS7 */
void cipher_bad_order( )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES)] = { 0 };
const uint8_t key_data[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa };
const uint8_t text[] = {
0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb,
0xbb, 0xbb, 0xbb, 0xbb };
uint8_t buffer[PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES)] = { 0 };
size_t length = 0;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data, sizeof( key_data ),
&key ) );
/* Call encrypt setup twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_encrypt_setup( &operation, key, alg ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call decrypt setup twice in a row. */
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_decrypt_setup( &operation, key, alg ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Generate an IV without calling setup beforehand. */
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Generate an IV twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Generate an IV after it's already set. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Set an IV without calling setup beforehand. */
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Set an IV after it's already set. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Set an IV after it's already generated. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ) );
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call update without an IV where an IV is required. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call update after finish. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
PSA_ASSERT( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ) );
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call finish without calling setup beforehand. */
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call finish without an IV where an IV is required. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
/* Not calling update means we are encrypting an empty buffer, which is OK
* for cipher modes with padding. */
ASSERT_OPERATION_IS_ACTIVE( operation );
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
ASSERT_OPERATION_IS_INACTIVE( operation );
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_OPERATION_IS_INACTIVE( operation );
/* Call finish twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
PSA_ASSERT( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ) );
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
PSA_ASSERT( psa_destroy_key( key ) );
exit:
psa_cipher_abort( &operation );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_fail( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
if ( PSA_ERROR_BAD_STATE != expected_status )
{
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg,
input->len );
ASSERT_ALLOC( output, output_buffer_size );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
}
status = psa_cipher_encrypt( key, alg, input->x, input->len, output,
output_buffer_size, &output_length );
TEST_EQUAL( status, expected_status );
exit:
mbedtls_free( output );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_alg_without_iv( int alg_arg, int key_type_arg, data_t *key_data,
data_t *plaintext, data_t *ciphertext )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
uint8_t iv[1] = { 0x5a };
size_t iv_length;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* Validate size macros */
TEST_ASSERT( ciphertext->len <=
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, plaintext->len ) );
TEST_ASSERT( PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, plaintext->len ) <=
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE( plaintext->len ) );
TEST_ASSERT( plaintext->len <=
PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, ciphertext->len ) );
TEST_ASSERT( PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, ciphertext->len ) <=
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE( ciphertext->len ) );
/* Set up key and output buffer */
psa_set_key_usage_flags( &attributes,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg,
plaintext->len );
ASSERT_ALLOC( output, output_buffer_size );
/* set_iv() is not allowed */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
TEST_EQUAL( psa_cipher_set_iv( &operation, iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
TEST_EQUAL( psa_cipher_set_iv( &operation, iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
/* generate_iv() is not allowed */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
TEST_EQUAL( psa_cipher_generate_iv( &operation, iv, sizeof( iv ),
&iv_length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
TEST_EQUAL( psa_cipher_generate_iv( &operation, iv, sizeof( iv ),
&iv_length ),
PSA_ERROR_BAD_STATE );
/* One-shot encryption */
output_length = ~0;
PSA_ASSERT( psa_cipher_encrypt( key, alg, plaintext->x, plaintext->len,
output, output_buffer_size,
&output_length ) );
ASSERT_COMPARE( ciphertext->x, ciphertext->len,
output, output_length );
/* One-shot decryption */
output_length = ~0;
PSA_ASSERT( psa_cipher_decrypt( key, alg, ciphertext->x, ciphertext->len,
output, output_buffer_size,
&output_length ) );
ASSERT_COMPARE( plaintext->x, plaintext->len,
output, output_length );
exit:
mbedtls_free( output );
psa_cipher_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_bad_key( int alg_arg, int key_type_arg, data_t *key_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t key_type = key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
/* Usage of either of these two size macros would cause divide by zero
* with incorrect key types previously. Input length should be irrelevant
* here. */
TEST_EQUAL( PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, 16 ),
0 );
TEST_EQUAL( PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, 16 ), 0 );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Should fail due to invalid alg type (to support invalid key type).
* Encrypt or decrypt will end up in the same place. */
status = psa_cipher_encrypt_setup( &operation, key, alg );
TEST_EQUAL( status, PSA_ERROR_INVALID_ARGUMENT );
exit:
psa_cipher_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_validation( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t iv_size = PSA_CIPHER_IV_LENGTH ( key_type, alg );
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
output1_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, input->len );
output2_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, input->len ) +
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg );
ASSERT_ALLOC( output1, output1_buffer_size );
ASSERT_ALLOC( output2, output2_buffer_size );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* The one-shot cipher encryption uses generated iv so validating
the output is not possible. Validating with multipart encryption. */
PSA_ASSERT( psa_cipher_encrypt( key, alg, input->x, input->len, output1,
output1_buffer_size, &output1_length ) );
TEST_ASSERT( output1_length <=
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, input->len ) );
TEST_ASSERT( output1_length <=
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE( input->len ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation, output1, iv_size ) );
PSA_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output2, output2_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, input->len ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( input->len ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( output1 + iv_size, output1_length - iv_size,
output2, output2_length );
exit:
psa_cipher_abort( &operation );
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_multipart( int alg_arg, int key_type_arg,
data_t *key_data, data_t *iv,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
if( iv->len > 0 )
{
PSA_ASSERT( psa_cipher_set_iv( &operation, iv->x, iv->len ) );
}
output_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, input->len ) +
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation, input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length == output1_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( first_part_size) );
total_output_length += function_output_length;
if( first_part_size < input->len )
{
PSA_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
( output_buffer_size == 0 ? NULL :
output + total_output_length ),
output_buffer_size - total_output_length,
&function_output_length ) );
TEST_ASSERT( function_output_length == output2_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type,
alg,
input->len - first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( input->len ) );
total_output_length += function_output_length;
}
status = psa_cipher_finish( &operation,
( output_buffer_size == 0 ? NULL :
output + total_output_length ),
output_buffer_size - total_output_length,
&function_output_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE );
total_output_length += function_output_length;
TEST_EQUAL( status, expected_status );
if( expected_status == PSA_SUCCESS )
{
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
exit:
psa_cipher_abort( &operation );
mbedtls_free( output );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_multipart( int alg_arg, int key_type_arg,
data_t *key_data, data_t *iv,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
if( iv->len > 0 )
{
PSA_ASSERT( psa_cipher_set_iv( &operation, iv->x, iv->len ) );
}
output_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, input->len ) +
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation,
input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length == output1_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( first_part_size ) );
total_output_length += function_output_length;
if( first_part_size < input->len )
{
PSA_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
( output_buffer_size == 0 ? NULL :
output + total_output_length ),
output_buffer_size - total_output_length,
&function_output_length ) );
TEST_ASSERT( function_output_length == output2_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type,
alg,
input->len - first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( input->len ) );
total_output_length += function_output_length;
}
status = psa_cipher_finish( &operation,
( output_buffer_size == 0 ? NULL :
output + total_output_length ),
output_buffer_size - total_output_length,
&function_output_length );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE );
total_output_length += function_output_length;
TEST_EQUAL( status, expected_status );
if( expected_status == PSA_SUCCESS )
{
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
exit:
psa_cipher_abort( &operation );
mbedtls_free( output );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_fail( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *iv,
data_t *input_arg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char *input = NULL;
size_t input_buffer_size = 0;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
if ( PSA_ERROR_BAD_STATE != expected_status )
{
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
}
/* Allocate input buffer and copy the iv and the plaintext */
input_buffer_size = ( (size_t) input_arg->len + (size_t) iv->len );
if ( input_buffer_size > 0 )
{
ASSERT_ALLOC( input, input_buffer_size );
memcpy( input, iv->x, iv->len );
memcpy( input + iv->len, input_arg->x, input_arg->len );
}
output_buffer_size = PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, input_buffer_size );
ASSERT_ALLOC( output, output_buffer_size );
status = psa_cipher_decrypt( key, alg, input, input_buffer_size, output,
output_buffer_size, &output_length );
TEST_EQUAL( status, expected_status );
exit:
mbedtls_free( input );
mbedtls_free( output );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *iv,
data_t *input_arg,
data_t *expected_output )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *input = NULL;
size_t input_buffer_size = 0;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
/* Allocate input buffer and copy the iv and the plaintext */
input_buffer_size = ( (size_t) input_arg->len + (size_t) iv->len );
if ( input_buffer_size > 0 )
{
ASSERT_ALLOC( input, input_buffer_size );
memcpy( input, iv->x, iv->len );
memcpy( input + iv->len, input_arg->x, input_arg->len );
}
output_buffer_size = PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, input_buffer_size );
ASSERT_ALLOC( output, output_buffer_size );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_cipher_decrypt( key, alg, input, input_buffer_size, output,
output_buffer_size, &output_length ) );
TEST_ASSERT( output_length <=
PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, input_buffer_size ) );
TEST_ASSERT( output_length <=
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE( input_buffer_size ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, output_length );
exit:
mbedtls_free( input );
mbedtls_free( output );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output1 = NULL;
size_t output1_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
output1_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, input->len );
ASSERT_ALLOC( output1, output1_size );
PSA_ASSERT( psa_cipher_encrypt( key, alg, input->x, input->len,
output1, output1_size,
&output1_length ) );
TEST_ASSERT( output1_length <=
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, input->len ) );
TEST_ASSERT( output1_length <=
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE( input->len ) );
output2_size = output1_length;
ASSERT_ALLOC( output2, output2_size );
PSA_ASSERT( psa_cipher_decrypt( key, alg, output1, output1_length,
output2, output2_size,
&output2_length ) );
TEST_ASSERT( output2_length <=
PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, output1_length ) );
TEST_ASSERT( output2_length <=
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE( output1_length ) );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output_multipart( int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input,
int first_part_size_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t first_part_size = first_part_size_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation1 = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t operation2 = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation1, key, alg ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation2, key, alg ) );
if( alg != PSA_ALG_ECB_NO_PADDING )
{
PSA_ASSERT( psa_cipher_generate_iv( &operation1,
iv, iv_size,
&iv_length ) );
}
output1_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE( key_type, alg, input->len );
TEST_ASSERT( output1_buffer_size <=
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE( input->len ) );
ASSERT_ALLOC( output1, output1_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation1, input->x, first_part_size,
output1, output1_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( first_part_size ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation1,
input->x + first_part_size,
input->len - first_part_size,
output1, output1_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type,
alg,
input->len - first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( input->len - first_part_size ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length,
output1_buffer_size - output1_length,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation1 ) );
output2_buffer_size = output1_length;
TEST_ASSERT( output2_buffer_size <=
PSA_CIPHER_DECRYPT_OUTPUT_SIZE( key_type, alg, output1_length ) );
TEST_ASSERT( output2_buffer_size <=
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE( output1_length ) );
ASSERT_ALLOC( output2, output2_buffer_size );
if( iv_length > 0 )
{
PSA_ASSERT( psa_cipher_set_iv( &operation2,
iv, iv_length ) );
}
PSA_ASSERT( psa_cipher_update( &operation2, output1, first_part_size,
output2, output2_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type, alg, first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( first_part_size ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation2,
output1 + first_part_size,
output1_length - first_part_size,
output2, output2_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_SIZE( key_type,
alg,
output1_length - first_part_size ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE( output1_length - first_part_size ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_SIZE( key_type, alg ) );
TEST_ASSERT( function_output_length <=
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation2 ) );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
exit:
psa_cipher_abort( &operation1 );
psa_cipher_abort( &operation2 );
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_result_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output_data2 = NULL;
size_t output_length2 = 0;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_result = expected_result_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = input_data->len + PSA_AEAD_TAG_LENGTH( key_type, key_bits,
alg );
/* For all currently defined algorithms, PSA_AEAD_ENCRYPT_OUTPUT_SIZE
* should be exact. */
if( expected_result != PSA_ERROR_INVALID_ARGUMENT &&
expected_result != PSA_ERROR_NOT_SUPPORTED )
{
TEST_EQUAL( output_size,
PSA_AEAD_ENCRYPT_OUTPUT_SIZE( key_type, alg, input_data->len ) );
TEST_ASSERT( output_size <=
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE( input_data->len ) );
}
ASSERT_ALLOC( output_data, output_size );
status = psa_aead_encrypt( key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length );
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if( status == PSA_ERROR_NOT_SUPPORTED )
{
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192( key_type, key_data->len * 8 );
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE( alg, nonce->len );
}
TEST_EQUAL( status, expected_result );
if( PSA_SUCCESS == expected_result )
{
ASSERT_ALLOC( output_data2, output_length );
/* For all currently defined algorithms, PSA_AEAD_DECRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL( input_data->len,
PSA_AEAD_DECRYPT_OUTPUT_SIZE( key_type, alg, output_length ) );
TEST_ASSERT( input_data->len <=
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE( output_length ) );
TEST_EQUAL( psa_aead_decrypt( key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
output_data, output_length,
output_data2, output_length,
&output_length2 ),
expected_result );
ASSERT_COMPARE( input_data->x, input_data->len,
output_data2, output_length2 );
}
exit:
psa_destroy_key( key );
mbedtls_free( output_data );
mbedtls_free( output_data2 );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_result )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = input_data->len + PSA_AEAD_TAG_LENGTH( key_type, key_bits,
alg );
/* For all currently defined algorithms, PSA_AEAD_ENCRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL( output_size,
PSA_AEAD_ENCRYPT_OUTPUT_SIZE( key_type, alg, input_data->len ) );
TEST_ASSERT( output_size <=
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE( input_data->len ) );
ASSERT_ALLOC( output_data, output_size );
status = psa_aead_encrypt( key, alg,
nonce->x, nonce->len,
additional_data->x, additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length );
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if( status == PSA_ERROR_NOT_SUPPORTED )
{
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192( key_type, key_data->len * 8 );
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE( alg, nonce->len );
}
PSA_ASSERT( status );
ASSERT_COMPARE( expected_result->x, expected_result->len,
output_data, output_length );
exit:
psa_destroy_key( key );
mbedtls_free( output_data );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_data,
int expected_result_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_result = expected_result_arg;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = input_data->len - PSA_AEAD_TAG_LENGTH( key_type, key_bits,
alg );
if( expected_result != PSA_ERROR_INVALID_ARGUMENT &&
expected_result != PSA_ERROR_NOT_SUPPORTED )
{
/* For all currently defined algorithms, PSA_AEAD_DECRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL( output_size,
PSA_AEAD_DECRYPT_OUTPUT_SIZE( key_type, alg, input_data->len ) );
TEST_ASSERT( output_size <=
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE( input_data->len ) );
}
ASSERT_ALLOC( output_data, output_size );
status = psa_aead_decrypt( key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length );
/* If the operation is not supported, just skip and not fail in case the
* decryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if( status == PSA_ERROR_NOT_SUPPORTED )
{
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192( key_type, key_data->len * 8 );
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE( alg, nonce->len );
}
TEST_EQUAL( status, expected_result );
if( expected_result == PSA_SUCCESS )
ASSERT_COMPARE( expected_data->x, expected_data->len,
output_data, output_length );
exit:
psa_destroy_key( key );
mbedtls_free( output_data );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void signature_size( int type_arg,
int bits,
int alg_arg,
int expected_size_arg )
{
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
size_t actual_size = PSA_SIGN_OUTPUT_SIZE( type, bits, alg );
TEST_EQUAL( actual_size, (size_t) expected_size_arg );
#if defined(MBEDTLS_TEST_DEPRECATED)
TEST_EQUAL( actual_size,
PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( type, bits, alg ) );
#endif /* MBEDTLS_TEST_DEPRECATED */
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void sign_hash_deterministic( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
PSA_ASSERT( psa_sign_hash( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
/* Verify that the signature is what is expected. */
ASSERT_COMPARE( output_data->x, output_data->len,
signature, signature_length );
#if defined(MBEDTLS_TEST_DEPRECATED)
memset( signature, 0, signature_size );
signature_length = INVALID_EXPORT_LENGTH;
PSA_ASSERT( psa_asymmetric_sign( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
ASSERT_COMPARE( output_data->x, output_data->len,
signature, signature_length );
#endif /* MBEDTLS_TEST_DEPRECATED */
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_hash_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size_arg, int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC( signature, signature_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
actual_status = psa_sign_hash( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length );
TEST_EQUAL( actual_status, expected_status );
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_ASSERT( signature_length <= signature_size );
#if defined(MBEDTLS_TEST_DEPRECATED)
signature_length = INVALID_EXPORT_LENGTH;
TEST_EQUAL( psa_asymmetric_sign( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ),
expected_status );
TEST_ASSERT( signature_length <= signature_size );
#endif /* MBEDTLS_TEST_DEPRECATED */
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify_hash( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
PSA_ASSERT( psa_sign_hash( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
/* Check that the signature length looks sensible. */
TEST_ASSERT( signature_length <= signature_size );
TEST_ASSERT( signature_length > 0 );
/* Use the library to verify that the signature is correct. */
PSA_ASSERT( psa_verify_hash( key, alg,
input_data->x, input_data->len,
signature, signature_length ) );
if( input_data->len != 0 )
{
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_EQUAL( psa_verify_hash( key, alg,
input_data->x, input_data->len,
signature, signature_length ),
PSA_ERROR_INVALID_SIGNATURE );
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void verify_hash( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
TEST_ASSERT( signature_data->len <= PSA_SIGNATURE_MAX_SIZE );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_verify_hash( key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len ) );
#if defined(MBEDTLS_TEST_DEPRECATED)
PSA_ASSERT( psa_asymmetric_verify( key, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len ) );
#endif /* MBEDTLS_TEST_DEPRECATED */
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void verify_hash_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
actual_status = psa_verify_hash( key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len );
TEST_EQUAL( actual_status, expected_status );
#if defined(MBEDTLS_TEST_DEPRECATED)
TEST_EQUAL( psa_asymmetric_verify( key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len ),
expected_status );
#endif /* MBEDTLS_TEST_DEPRECATED */
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_message_deterministic( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *output_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
signature_size = PSA_SIGN_OUTPUT_SIZE( key_type, key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
PSA_ASSERT( psa_sign_message( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
ASSERT_COMPARE( output_data->x, output_data->len,
signature, signature_length );
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_message_fail( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
int signature_size_arg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC( signature, signature_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
actual_status = psa_sign_message( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length );
TEST_EQUAL( actual_status, expected_status );
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_ASSERT( signature_length <= signature_size );
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify_message( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_MESSAGE |
PSA_KEY_USAGE_VERIFY_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
signature_size = PSA_SIGN_OUTPUT_SIZE( key_type, key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
PSA_ASSERT( psa_sign_message( key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
TEST_ASSERT( signature_length <= signature_size );
TEST_ASSERT( signature_length > 0 );
PSA_ASSERT( psa_verify_message( key, alg,
input_data->x, input_data->len,
signature, signature_length ) );
if( input_data->len != 0 )
{
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_EQUAL( psa_verify_message( key, alg,
input_data->x, input_data->len,
signature, signature_length ),
PSA_ERROR_INVALID_SIGNATURE );
}
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( signature );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void verify_message( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *signature_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
TEST_ASSERT( signature_data->len <= PSA_SIGNATURE_MAX_SIZE );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_verify_message( key, alg,
input_data->x, input_data->len,
signature_data->x, signature_data->len ) );
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void verify_message_fail( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *hash_data,
data_t *signature_data,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
actual_status = psa_verify_message( key, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len );
TEST_EQUAL( actual_status, expected_status );
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int expected_output_length_arg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t expected_output_length = expected_output_length_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* Import the key */
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Determine the maximum output length */
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
TEST_ASSERT( output_size <= PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE );
ASSERT_ALLOC( output, output_size );
/* Encrypt the input */
actual_status = psa_asymmetric_encrypt( key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_EQUAL( output_length, expected_output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_encrypt( key, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_EQUAL( output_length, expected_output_length );
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( output );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
unsigned char *output2 = NULL;
size_t output2_size;
size_t output2_length = ~0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
/* Determine the maximum ciphertext length */
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
TEST_ASSERT( output_size <= PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE );
ASSERT_ALLOC( output, output_size );
output2_size = input_data->len;
TEST_ASSERT( output2_size <=
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE( key_type, key_bits, alg ) );
TEST_ASSERT( output2_size <= PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE );
ASSERT_ALLOC( output2, output2_size );
/* We test encryption by checking that encrypt-then-decrypt gives back
* the original plaintext because of the non-optional random
* part of encryption process which prevents using fixed vectors. */
PSA_ASSERT( psa_asymmetric_encrypt( key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length ) );
/* We don't know what ciphertext length to expect, but check that
* it looks sensible. */
TEST_ASSERT( output_length <= output_size );
PSA_ASSERT( psa_asymmetric_decrypt( key, alg,
output, output_length,
label->x, label->len,
output2, output2_size,
&output2_length ) );
ASSERT_COMPARE( input_data->x, input_data->len,
output2, output2_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( output );
mbedtls_free( output2 );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
data_t *expected_data )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = ~0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
/* Determine the maximum ciphertext length */
output_size = PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
TEST_ASSERT( output_size <= PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE );
ASSERT_ALLOC( output, output_size );
PSA_ASSERT( psa_asymmetric_decrypt( key, alg,
input_data->x, input_data->len,
label->x, label->len,
output,
output_size,
&output_length ) );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
PSA_ASSERT( psa_asymmetric_decrypt( key, alg,
input_data->x, input_data->len,
NULL, label->len,
output,
output_size,
&output_length ) );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
}
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( output );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt_fail( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int output_size_arg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = output_size_arg;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC( output, output_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
actual_status = psa_asymmetric_decrypt( key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_ASSERT( output_length <= output_size );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_decrypt( key, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_ASSERT( output_length <= output_size );
}
exit:
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
mbedtls_free( output );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_derivation_init( )
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
size_t capacity;
psa_key_derivation_operation_t func = psa_key_derivation_operation_init( );
psa_key_derivation_operation_t init = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_derivation_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A default operation should not be able to report its capacity. */
TEST_EQUAL( psa_key_derivation_get_capacity( &func, &capacity ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_key_derivation_get_capacity( &init, &capacity ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_key_derivation_get_capacity( &zero, &capacity ),
PSA_ERROR_BAD_STATE );
/* A default operation should be abortable without error. */
PSA_ASSERT( psa_key_derivation_abort(&func) );
PSA_ASSERT( psa_key_derivation_abort(&init) );
PSA_ASSERT( psa_key_derivation_abort(&zero) );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_setup( int alg_arg, int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
TEST_EQUAL( psa_key_derivation_setup( &operation, alg ),
expected_status );
exit:
psa_key_derivation_abort( &operation );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_set_capacity( int alg_arg, int capacity_arg,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
size_t capacity = capacity_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
TEST_EQUAL( psa_key_derivation_set_capacity( &operation, capacity ),
expected_status );
exit:
psa_key_derivation_abort( &operation );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_input( int alg_arg,
int step_arg1, int key_type_arg1, data_t *input1,
int expected_status_arg1,
int step_arg2, int key_type_arg2, data_t *input2,
int expected_status_arg2,
int step_arg3, int key_type_arg3, data_t *input3,
int expected_status_arg3,
int output_key_type_arg, int expected_output_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_key_derivation_step_t steps[] = {step_arg1, step_arg2, step_arg3};
psa_key_type_t key_types[] = {key_type_arg1, key_type_arg2, key_type_arg3};
psa_status_t expected_statuses[] = {expected_status_arg1,
expected_status_arg2,
expected_status_arg3};
data_t *inputs[] = {input1, input2, input3};
mbedtls_svc_key_id_t keys[] = { MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT };
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t i;
psa_key_type_t output_key_type = output_key_type_arg;
mbedtls_svc_key_id_t output_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t expected_output_status = expected_output_status_arg;
psa_status_t actual_output_status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
for( i = 0; i < ARRAY_LENGTH( steps ); i++ )
{
mbedtls_test_set_step( i );
if( steps[i] == 0 )
{
/* Skip this step */
}
else if( key_types[i] != PSA_KEY_TYPE_NONE )
{
psa_set_key_type( &attributes, key_types[i] );
PSA_ASSERT( psa_import_key( &attributes,
inputs[i]->x, inputs[i]->len,
&keys[i] ) );
if( PSA_KEY_TYPE_IS_KEY_PAIR( key_types[i] ) &&
steps[i] == PSA_KEY_DERIVATION_INPUT_SECRET )
{
// When taking a private key as secret input, use key agreement
// to add the shared secret to the derivation
TEST_EQUAL( mbedtls_test_psa_key_agreement_with_self(
&operation, keys[i] ),
expected_statuses[i] );
}
else
{
TEST_EQUAL( psa_key_derivation_input_key( &operation, steps[i],
keys[i] ),
expected_statuses[i] );
}
}
else
{
TEST_EQUAL( psa_key_derivation_input_bytes(
&operation, steps[i],
inputs[i]->x, inputs[i]->len ),
expected_statuses[i] );
}
}
if( output_key_type != PSA_KEY_TYPE_NONE )
{
psa_reset_key_attributes( &attributes );
psa_set_key_type( &attributes, output_key_type );
psa_set_key_bits( &attributes, 8 );
actual_output_status =
psa_key_derivation_output_key( &attributes, &operation,
&output_key );
}
else
{
uint8_t buffer[1];
actual_output_status =
psa_key_derivation_output_bytes( &operation,
buffer, sizeof( buffer ) );
}
TEST_EQUAL( actual_output_status, expected_output_status );
exit:
psa_key_derivation_abort( &operation );
for( i = 0; i < ARRAY_LENGTH( keys ); i++ )
psa_destroy_key( keys[i] );
psa_destroy_key( output_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_over_capacity( int alg_arg )
{
psa_algorithm_t alg = alg_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
size_t key_type = PSA_KEY_TYPE_DERIVE;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char input1[] = "Input 1";
size_t input1_length = sizeof( input1 );
unsigned char input2[] = "Input 2";
size_t input2_length = sizeof( input2 );
uint8_t buffer[42];
size_t capacity = sizeof( buffer );
const uint8_t key_data[22] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b};
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes,
key_data, sizeof( key_data ),
&key ) );
/* valid key derivation */
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, key, alg,
input1, input1_length,
input2, input2_length,
capacity ) )
goto exit;
/* state of operation shouldn't allow additional generation */
TEST_EQUAL( psa_key_derivation_setup( &operation, alg ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_key_derivation_output_bytes( &operation, buffer, capacity ) );
TEST_EQUAL( psa_key_derivation_output_bytes( &operation, buffer, capacity ),
PSA_ERROR_INSUFFICIENT_DATA );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_actions_without_setup( )
{
uint8_t output_buffer[16];
size_t buffer_size = 16;
size_t capacity = 0;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
TEST_ASSERT( psa_key_derivation_output_bytes( &operation,
output_buffer, buffer_size )
== PSA_ERROR_BAD_STATE );
TEST_ASSERT( psa_key_derivation_get_capacity( &operation, &capacity )
== PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
TEST_ASSERT( psa_key_derivation_output_bytes( &operation,
output_buffer, buffer_size )
== PSA_ERROR_BAD_STATE );
TEST_ASSERT( psa_key_derivation_get_capacity( &operation, &capacity )
== PSA_ERROR_BAD_STATE );
exit:
psa_key_derivation_abort( &operation );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_output( int alg_arg,
int step1_arg, data_t *input1,
int step2_arg, data_t *input2,
int step3_arg, data_t *input3,
int requested_capacity_arg,
data_t *expected_output1,
data_t *expected_output2 )
{
psa_algorithm_t alg = alg_arg;
psa_key_derivation_step_t steps[] = {step1_arg, step2_arg, step3_arg};
data_t *inputs[] = {input1, input2, input3};
mbedtls_svc_key_id_t keys[] = { MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT };
size_t requested_capacity = requested_capacity_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
uint8_t *expected_outputs[2] =
{expected_output1->x, expected_output2->x};
size_t output_sizes[2] =
{expected_output1->len, expected_output2->len};
size_t output_buffer_size = 0;
uint8_t *output_buffer = NULL;
size_t expected_capacity;
size_t current_capacity;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
size_t i;
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
if( output_sizes[i] > output_buffer_size )
output_buffer_size = output_sizes[i];
if( output_sizes[i] == 0 )
expected_outputs[i] = NULL;
}
ASSERT_ALLOC( output_buffer, output_buffer_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
/* Extraction phase. */
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
PSA_ASSERT( psa_key_derivation_set_capacity( &operation,
requested_capacity ) );
for( i = 0; i < ARRAY_LENGTH( steps ); i++ )
{
switch( steps[i] )
{
case 0:
break;
case PSA_KEY_DERIVATION_INPUT_SECRET:
PSA_ASSERT( psa_import_key( &attributes,
inputs[i]->x, inputs[i]->len,
&keys[i] ) );
if ( PSA_ALG_IS_TLS12_PSK_TO_MS( alg ) )
{
PSA_ASSERT( psa_get_key_attributes( keys[i], &attributes ) );
TEST_ASSERT( PSA_BITS_TO_BYTES( psa_get_key_bits( &attributes ) ) <=
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE );
}
PSA_ASSERT( psa_key_derivation_input_key(
&operation, steps[i], keys[i] ) );
break;
default:
PSA_ASSERT( psa_key_derivation_input_bytes(
&operation, steps[i],
inputs[i]->x, inputs[i]->len ) );
break;
}
}
PSA_ASSERT( psa_key_derivation_get_capacity( &operation,
&current_capacity ) );
TEST_EQUAL( current_capacity, requested_capacity );
expected_capacity = requested_capacity;
/* Expansion phase. */
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
/* Read some bytes. */
status = psa_key_derivation_output_bytes( &operation,
output_buffer, output_sizes[i] );
if( expected_capacity == 0 && output_sizes[i] == 0 )
{
/* Reading 0 bytes when 0 bytes are available can go either way. */
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_DATA );
continue;
}
else if( expected_capacity == 0 ||
output_sizes[i] > expected_capacity )
{
/* Capacity exceeded. */
TEST_EQUAL( status, PSA_ERROR_INSUFFICIENT_DATA );
expected_capacity = 0;
continue;
}
/* Success. Check the read data. */
PSA_ASSERT( status );
if( output_sizes[i] != 0 )
ASSERT_COMPARE( output_buffer, output_sizes[i],
expected_outputs[i], output_sizes[i] );
/* Check the operation status. */
expected_capacity -= output_sizes[i];
PSA_ASSERT( psa_key_derivation_get_capacity( &operation,
&current_capacity ) );
TEST_EQUAL( expected_capacity, current_capacity );
}
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
exit:
mbedtls_free( output_buffer );
psa_key_derivation_abort( &operation );
for( i = 0; i < ARRAY_LENGTH( keys ); i++ )
psa_destroy_key( keys[i] );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_full( int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int requested_capacity_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char output_buffer[16];
size_t expected_capacity = requested_capacity;
size_t current_capacity;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&key ) );
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, key, alg,
input1->x, input1->len,
input2->x, input2->len,
requested_capacity ) )
goto exit;
PSA_ASSERT( psa_key_derivation_get_capacity( &operation,
&current_capacity ) );
TEST_EQUAL( current_capacity, expected_capacity );
/* Expansion phase. */
while( current_capacity > 0 )
{
size_t read_size = sizeof( output_buffer );
if( read_size > current_capacity )
read_size = current_capacity;
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output_buffer,
read_size ) );
expected_capacity -= read_size;
PSA_ASSERT( psa_key_derivation_get_capacity( &operation,
&current_capacity ) );
TEST_EQUAL( current_capacity, expected_capacity );
}
/* Check that the operation refuses to go over capacity. */
TEST_EQUAL( psa_key_derivation_output_bytes( &operation, output_buffer, 1 ),
PSA_ERROR_INSUFFICIENT_DATA );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_exercise( int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int derived_type_arg,
int derived_bits_arg,
int derived_usage_arg,
int derived_alg_arg )
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t derived_type = derived_type_arg;
size_t derived_bits = derived_bits_arg;
psa_key_usage_t derived_usage = derived_usage_arg;
psa_algorithm_t derived_alg = derived_alg_arg;
size_t capacity = PSA_BITS_TO_BYTES( derived_bits );
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &attributes, key_data->x, key_data->len,
&base_key ) );
/* Derive a key. */
if ( mbedtls_test_psa_setup_key_derivation_wrap( &operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity ) )
goto exit;
psa_set_key_usage_flags( &attributes, derived_usage );
psa_set_key_algorithm( &attributes, derived_alg );
psa_set_key_type( &attributes, derived_type );
psa_set_key_bits( &attributes, derived_bits );
PSA_ASSERT( psa_key_derivation_output_key( &attributes, &operation,
&derived_key ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( derived_key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), derived_type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), derived_bits );
/* Exercise the derived key. */
if( ! mbedtls_test_psa_exercise_key( derived_key, derived_usage, derived_alg ) )
goto exit;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_key_derivation_abort( &operation );
psa_destroy_key( base_key );
psa_destroy_key( derived_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_export( int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int bytes1_arg,
int bytes2_arg )
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
size_t bytes1 = bytes1_arg;
size_t bytes2 = bytes2_arg;
size_t capacity = bytes1 + bytes2;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
uint8_t *output_buffer = NULL;
uint8_t *export_buffer = NULL;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t length;
ASSERT_ALLOC( output_buffer, capacity );
ASSERT_ALLOC( export_buffer, capacity );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &base_attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &base_attributes, alg );
psa_set_key_type( &base_attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &base_attributes, key_data->x, key_data->len,
&base_key ) );
/* Derive some material and output it. */
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity ) )
goto exit;
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output_buffer,
capacity ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
/* Derive the same output again, but this time store it in key objects. */
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity ) )
goto exit;
psa_set_key_usage_flags( &derived_attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_algorithm( &derived_attributes, 0 );
psa_set_key_type( &derived_attributes, PSA_KEY_TYPE_RAW_DATA );
psa_set_key_bits( &derived_attributes, PSA_BYTES_TO_BITS( bytes1 ) );
PSA_ASSERT( psa_key_derivation_output_key( &derived_attributes, &operation,
&derived_key ) );
PSA_ASSERT( psa_export_key( derived_key,
export_buffer, bytes1,
&length ) );
TEST_EQUAL( length, bytes1 );
PSA_ASSERT( psa_destroy_key( derived_key ) );
psa_set_key_bits( &derived_attributes, PSA_BYTES_TO_BITS( bytes2 ) );
PSA_ASSERT( psa_key_derivation_output_key( &derived_attributes, &operation,
&derived_key ) );
PSA_ASSERT( psa_export_key( derived_key,
export_buffer + bytes1, bytes2,
&length ) );
TEST_EQUAL( length, bytes2 );
/* Compare the outputs from the two runs. */
ASSERT_COMPARE( output_buffer, bytes1 + bytes2,
export_buffer, capacity );
exit:
mbedtls_free( output_buffer );
mbedtls_free( export_buffer );
psa_key_derivation_abort( &operation );
psa_destroy_key( base_key );
psa_destroy_key( derived_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key( int alg_arg,
data_t *key_data, data_t *input1, data_t *input2,
int type_arg, int bits_arg,
int expected_status_arg,
int is_large_output )
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &base_attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &base_attributes, alg );
psa_set_key_type( &base_attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &base_attributes, key_data->x, key_data->len,
&base_key ) );
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
SIZE_MAX ) )
goto exit;
psa_set_key_usage_flags( &derived_attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_algorithm( &derived_attributes, 0 );
psa_set_key_type( &derived_attributes, type );
psa_set_key_bits( &derived_attributes, bits );
psa_status_t status =
psa_key_derivation_output_key( &derived_attributes,
&operation,
&derived_key );
if( is_large_output > 0 )
TEST_ASSUME( status != PSA_ERROR_INSUFFICIENT_MEMORY );
TEST_EQUAL( status, expected_status );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( base_key );
psa_destroy_key( derived_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_setup( int alg_arg,
int our_key_type_arg, int our_key_alg_arg,
data_t *our_key_data, data_t *peer_key_data,
int expected_status_arg )
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t our_key_alg = our_key_alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, our_key_alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes,
our_key_data->x, our_key_data->len,
&our_key ) );
/* The tests currently include inputs that should fail at either step.
* Test cases that fail at the setup step should be changed to call
* key_derivation_setup instead, and this function should be renamed
* to key_agreement_fail. */
status = psa_key_derivation_setup( &operation, alg );
if( status == PSA_SUCCESS )
{
TEST_EQUAL( psa_key_derivation_key_agreement(
&operation, PSA_KEY_DERIVATION_INPUT_SECRET,
our_key,
peer_key_data->x, peer_key_data->len ),
expected_status );
}
else
{
TEST_ASSERT( status == expected_status );
}
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( our_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void raw_key_agreement( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output )
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
unsigned char *output = NULL;
size_t output_length = ~0;
size_t key_bits;
ASSERT_ALLOC( output, expected_output->len );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes,
our_key_data->x, our_key_data->len,
&our_key ) );
PSA_ASSERT( psa_get_key_attributes( our_key, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
PSA_ASSERT( psa_raw_key_agreement( alg, our_key,
peer_key_data->x, peer_key_data->len,
output, expected_output->len,
&output_length ) );
ASSERT_COMPARE( output, output_length,
expected_output->x, expected_output->len );
TEST_ASSERT( output_length <=
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE( our_key_type, key_bits ) );
TEST_ASSERT( output_length <=
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE );
exit:
mbedtls_free( output );
psa_destroy_key( our_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_capacity( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
int expected_capacity_arg )
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t actual_capacity;
unsigned char output[16];
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes,
our_key_data->x, our_key_data->len,
&our_key ) );
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
PSA_ASSERT( psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, our_key,
peer_key_data->x, peer_key_data->len ) );
if( PSA_ALG_IS_HKDF( PSA_ALG_KEY_AGREEMENT_GET_KDF( alg ) ) )
{
/* The test data is for info="" */
PSA_ASSERT( psa_key_derivation_input_bytes( &operation,
PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0 ) );
}
/* Test the advertized capacity. */
PSA_ASSERT( psa_key_derivation_get_capacity(
&operation, &actual_capacity ) );
TEST_EQUAL( actual_capacity, (size_t) expected_capacity_arg );
/* Test the actual capacity by reading the output. */
while( actual_capacity > sizeof( output ) )
{
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output, sizeof( output ) ) );
actual_capacity -= sizeof( output );
}
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output, actual_capacity ) );
TEST_EQUAL( psa_key_derivation_output_bytes( &operation, output, 1 ),
PSA_ERROR_INSUFFICIENT_DATA );
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( our_key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_output( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output1, data_t *expected_output2 )
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *actual_output = NULL;
ASSERT_ALLOC( actual_output, MAX( expected_output1->len,
expected_output2->len ) );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes,
our_key_data->x, our_key_data->len,
&our_key ) );
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
PSA_ASSERT( psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, our_key,
peer_key_data->x, peer_key_data->len ) );
if( PSA_ALG_IS_HKDF( PSA_ALG_KEY_AGREEMENT_GET_KDF( alg ) ) )
{
/* The test data is for info="" */
PSA_ASSERT( psa_key_derivation_input_bytes( &operation,
PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0 ) );
}
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
actual_output,
expected_output1->len ) );
ASSERT_COMPARE( actual_output, expected_output1->len,
expected_output1->x, expected_output1->len );
if( expected_output2->len != 0 )
{
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
actual_output,
expected_output2->len ) );
ASSERT_COMPARE( actual_output, expected_output2->len,
expected_output2->x, expected_output2->len );
}
exit:
psa_key_derivation_abort( &operation );
psa_destroy_key( our_key );
PSA_DONE( );
mbedtls_free( actual_output );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_random( int bytes_arg )
{
size_t bytes = bytes_arg;
unsigned char *output = NULL;
unsigned char *changed = NULL;
size_t i;
unsigned run;
TEST_ASSERT( bytes_arg >= 0 );
ASSERT_ALLOC( output, bytes );
ASSERT_ALLOC( changed, bytes );
PSA_ASSERT( psa_crypto_init( ) );
/* Run several times, to ensure that every output byte will be
* nonzero at least once with overwhelming probability
* (2^(-8*number_of_runs)). */
for( run = 0; run < 10; run++ )
{
if( bytes != 0 )
memset( output, 0, bytes );
PSA_ASSERT( psa_generate_random( output, bytes ) );
for( i = 0; i < bytes; i++ )
{
if( output[i] != 0 )
++changed[i];
}
}
/* Check that every byte was changed to nonzero at least once. This
* validates that psa_generate_random is overwriting every byte of
* the output buffer. */
for( i = 0; i < bytes; i++ )
{
TEST_ASSERT( changed[i] != 0 );
}
exit:
PSA_DONE( );
mbedtls_free( output );
mbedtls_free( changed );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_key( int type_arg,
int bits_arg,
int usage_arg,
int alg_arg,
int expected_status_arg,
int is_large_key )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
psa_set_key_bits( &attributes, bits );
/* Generate a key */
psa_status_t status = psa_generate_key( &attributes, &key );
if( is_large_key > 0 )
TEST_ASSUME( status != PSA_ERROR_INSUFFICIENT_MEMORY );
TEST_EQUAL( status , expected_status );
if( expected_status != PSA_SUCCESS )
goto exit;
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( key, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), bits );
/* Do something with the key according to its type and permitted usage. */
if( ! mbedtls_test_psa_exercise_key( key, usage, alg ) )
goto exit;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &got_attributes );
psa_destroy_key( key );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_KEY_TYPE_RSA_KEY_PAIR:PSA_WANT_ALG_RSA_PKCS1V15_CRYPT:PSA_WANT_ALG_RSA_PKCS1V15_SIGN:MBEDTLS_GENPRIME */
void generate_key_rsa( int bits_arg,
data_t *e_arg,
int expected_status_arg )
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = PSA_KEY_TYPE_RSA_KEY_PAIR;
size_t bits = bits_arg;
psa_key_usage_t usage = PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT;
psa_algorithm_t alg = PSA_ALG_RSA_PKCS1V15_SIGN_RAW;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *exported = NULL;
size_t exported_size =
PSA_EXPORT_KEY_OUTPUT_SIZE( PSA_KEY_TYPE_RSA_PUBLIC_KEY, bits );
size_t exported_length = SIZE_MAX;
uint8_t *e_read_buffer = NULL;
int is_default_public_exponent = 0;
size_t e_read_size = PSA_KEY_DOMAIN_PARAMETERS_SIZE( type, bits );
size_t e_read_length = SIZE_MAX;
if( e_arg->len == 0 ||
( e_arg->len == 3 &&
e_arg->x[0] == 1 && e_arg->x[1] == 0 && e_arg->x[2] == 1 ) )
{
is_default_public_exponent = 1;
e_read_size = 0;
}
ASSERT_ALLOC( e_read_buffer, e_read_size );
ASSERT_ALLOC( exported, exported_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
PSA_ASSERT( psa_set_key_domain_parameters( &attributes, type,
e_arg->x, e_arg->len ) );
psa_set_key_bits( &attributes, bits );
/* Generate a key */
TEST_EQUAL( psa_generate_key( &attributes, &key ), expected_status );
if( expected_status != PSA_SUCCESS )
goto exit;
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
TEST_EQUAL( psa_get_key_type( &attributes ), type );
TEST_EQUAL( psa_get_key_bits( &attributes ), bits );
PSA_ASSERT( psa_get_key_domain_parameters( &attributes,
e_read_buffer, e_read_size,
&e_read_length ) );
if( is_default_public_exponent )
TEST_EQUAL( e_read_length, 0 );
else
ASSERT_COMPARE( e_read_buffer, e_read_length, e_arg->x, e_arg->len );
/* Do something with the key according to its type and permitted usage. */
if( ! mbedtls_test_psa_exercise_key( key, usage, alg ) )
goto exit;
/* Export the key and check the public exponent. */
PSA_ASSERT( psa_export_public_key( key,
exported, exported_size,
&exported_length ) );
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_EQUAL( 0, mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ) );
TEST_ASSERT( mbedtls_test_asn1_skip_integer( &p, end, bits, bits, 1 ) );
TEST_EQUAL( 0, mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_INTEGER ) );
if( len >= 1 && p[0] == 0 )
{
++p;
--len;
}
if( e_arg->len == 0 )
{
TEST_EQUAL( len, 3 );
TEST_EQUAL( p[0], 1 );
TEST_EQUAL( p[1], 0 );
TEST_EQUAL( p[2], 1 );
}
else
ASSERT_COMPARE( p, len, e_arg->x, e_arg->len );
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes() or
* set by psa_set_key_domain_parameters() thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
psa_destroy_key( key );
PSA_DONE( );
mbedtls_free( e_read_buffer );
mbedtls_free( exported );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PSA_CRYPTO_STORAGE_C */
void persistent_key_load_key_from_storage( data_t *data,
int type_arg, int bits_arg,
int usage_flags_arg, int alg_arg,
int generation_method )
{
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make( 1, 1 );
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_key_usage_t usage_flags = usage_flags_arg;
psa_algorithm_t alg = alg_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char *first_export = NULL;
unsigned char *second_export = NULL;
size_t export_size = PSA_EXPORT_KEY_OUTPUT_SIZE( type, bits );
size_t first_exported_length;
size_t second_exported_length;
if( usage_flags & PSA_KEY_USAGE_EXPORT )
{
ASSERT_ALLOC( first_export, export_size );
ASSERT_ALLOC( second_export, export_size );
}
PSA_ASSERT( psa_crypto_init() );
psa_set_key_id( &attributes, key_id );
psa_set_key_usage_flags( &attributes, usage_flags );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
psa_set_key_bits( &attributes, bits );
switch( generation_method )
{
case IMPORT_KEY:
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, data->x, data->len,
&key ) );
break;
case GENERATE_KEY:
/* Generate a key */
PSA_ASSERT( psa_generate_key( &attributes, &key ) );
break;
case DERIVE_KEY:
#if defined(PSA_WANT_ALG_HKDF) && defined(PSA_WANT_ALG_SHA_256)
{
/* Create base key */
psa_algorithm_t derive_alg = PSA_ALG_HKDF( PSA_ALG_SHA_256 );
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags( &base_attributes,
PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &base_attributes, derive_alg );
psa_set_key_type( &base_attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &base_attributes,
data->x, data->len,
&base_key ) );
/* Derive a key. */
PSA_ASSERT( psa_key_derivation_setup( &operation, derive_alg ) );
PSA_ASSERT( psa_key_derivation_input_key(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, base_key ) );
PSA_ASSERT( psa_key_derivation_input_bytes(
&operation, PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0 ) );
PSA_ASSERT( psa_key_derivation_output_key( &attributes,
&operation,
&key ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
PSA_ASSERT( psa_destroy_key( base_key ) );
base_key = MBEDTLS_SVC_KEY_ID_INIT;
}
#else
TEST_ASSUME( ! "KDF not supported in this configuration" );
#endif
break;
default:
TEST_ASSERT( ! "generation_method not implemented in test" );
break;
}
psa_reset_key_attributes( &attributes );
/* Export the key if permitted by the key policy. */
if( usage_flags & PSA_KEY_USAGE_EXPORT )
{
PSA_ASSERT( psa_export_key( key,
first_export, export_size,
&first_exported_length ) );
if( generation_method == IMPORT_KEY )
ASSERT_COMPARE( data->x, data->len,
first_export, first_exported_length );
}
/* Shutdown and restart */
PSA_ASSERT( psa_purge_key( key ) );
PSA_DONE();
PSA_ASSERT( psa_crypto_init() );
/* Check key slot still contains key data */
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
TEST_ASSERT( mbedtls_svc_key_id_equal(
psa_get_key_id( &attributes ), key_id ) );
TEST_EQUAL( psa_get_key_lifetime( &attributes ),
PSA_KEY_LIFETIME_PERSISTENT );
TEST_EQUAL( psa_get_key_type( &attributes ), type );
TEST_EQUAL( psa_get_key_bits( &attributes ), bits );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ),
mbedtls_test_update_key_usage_flags( usage_flags ) );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), alg );
/* Export the key again if permitted by the key policy. */
if( usage_flags & PSA_KEY_USAGE_EXPORT )
{
PSA_ASSERT( psa_export_key( key,
second_export, export_size,
&second_exported_length ) );
ASSERT_COMPARE( first_export, first_exported_length,
second_export, second_exported_length );
}
/* Do something with the key according to its type and permitted usage. */
if( ! mbedtls_test_psa_exercise_key( key, usage_flags, alg ) )
goto exit;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( first_export );
mbedtls_free( second_export );
psa_key_derivation_abort( &operation );
psa_destroy_key( base_key );
psa_destroy_key( key );
PSA_DONE();
}
/* END_CASE */