mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2025-01-07 06:15:37 +00:00
582f2398d4
Backport 2.x: Fix builds when config.h only defines MBEDTLS_BIGNUM_C
3094 lines
82 KiB
C
3094 lines
82 KiB
C
/*
|
|
* Multi-precision integer library
|
|
*
|
|
* Copyright The Mbed TLS Contributors
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* The following sources were referenced in the design of this Multi-precision
|
|
* Integer library:
|
|
*
|
|
* [1] Handbook of Applied Cryptography - 1997
|
|
* Menezes, van Oorschot and Vanstone
|
|
*
|
|
* [2] Multi-Precision Math
|
|
* Tom St Denis
|
|
* https://github.com/libtom/libtommath/blob/develop/tommath.pdf
|
|
*
|
|
* [3] GNU Multi-Precision Arithmetic Library
|
|
* https://gmplib.org/manual/index.html
|
|
*
|
|
*/
|
|
|
|
#include "common.h"
|
|
|
|
#if defined(MBEDTLS_BIGNUM_C)
|
|
|
|
#include "mbedtls/bignum.h"
|
|
#include "mbedtls/bn_mul.h"
|
|
#include "mbedtls/platform_util.h"
|
|
#include "mbedtls/error.h"
|
|
#include "constant_time_internal.h"
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#if defined(MBEDTLS_PLATFORM_C)
|
|
#include "mbedtls/platform.h"
|
|
#else
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#define mbedtls_printf printf
|
|
#define mbedtls_calloc calloc
|
|
#define mbedtls_free free
|
|
#endif
|
|
|
|
#define MPI_VALIDATE_RET( cond ) \
|
|
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
|
|
#define MPI_VALIDATE( cond ) \
|
|
MBEDTLS_INTERNAL_VALIDATE( cond )
|
|
|
|
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
|
#define biL (ciL << 3) /* bits in limb */
|
|
#define biH (ciL << 2) /* half limb size */
|
|
|
|
#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
|
|
|
|
/*
|
|
* Convert between bits/chars and number of limbs
|
|
* Divide first in order to avoid potential overflows
|
|
*/
|
|
#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
|
|
#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
|
|
|
|
/* Implementation that should never be optimized out by the compiler */
|
|
static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
|
|
{
|
|
mbedtls_platform_zeroize( v, ciL * n );
|
|
}
|
|
|
|
/*
|
|
* Initialize one MPI
|
|
*/
|
|
void mbedtls_mpi_init( mbedtls_mpi *X )
|
|
{
|
|
MPI_VALIDATE( X != NULL );
|
|
|
|
X->s = 1;
|
|
X->n = 0;
|
|
X->p = NULL;
|
|
}
|
|
|
|
/*
|
|
* Unallocate one MPI
|
|
*/
|
|
void mbedtls_mpi_free( mbedtls_mpi *X )
|
|
{
|
|
if( X == NULL )
|
|
return;
|
|
|
|
if( X->p != NULL )
|
|
{
|
|
mbedtls_mpi_zeroize( X->p, X->n );
|
|
mbedtls_free( X->p );
|
|
}
|
|
|
|
X->s = 1;
|
|
X->n = 0;
|
|
X->p = NULL;
|
|
}
|
|
|
|
/*
|
|
* Enlarge to the specified number of limbs
|
|
*/
|
|
int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
|
|
{
|
|
mbedtls_mpi_uint *p;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
|
|
if( X->n < nblimbs )
|
|
{
|
|
if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
|
|
if( X->p != NULL )
|
|
{
|
|
memcpy( p, X->p, X->n * ciL );
|
|
mbedtls_mpi_zeroize( X->p, X->n );
|
|
mbedtls_free( X->p );
|
|
}
|
|
|
|
X->n = nblimbs;
|
|
X->p = p;
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Resize down as much as possible,
|
|
* while keeping at least the specified number of limbs
|
|
*/
|
|
int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
|
|
{
|
|
mbedtls_mpi_uint *p;
|
|
size_t i;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
|
|
/* Actually resize up if there are currently fewer than nblimbs limbs. */
|
|
if( X->n <= nblimbs )
|
|
return( mbedtls_mpi_grow( X, nblimbs ) );
|
|
/* After this point, then X->n > nblimbs and in particular X->n > 0. */
|
|
|
|
for( i = X->n - 1; i > 0; i-- )
|
|
if( X->p[i] != 0 )
|
|
break;
|
|
i++;
|
|
|
|
if( i < nblimbs )
|
|
i = nblimbs;
|
|
|
|
if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
|
|
if( X->p != NULL )
|
|
{
|
|
memcpy( p, X->p, i * ciL );
|
|
mbedtls_mpi_zeroize( X->p, X->n );
|
|
mbedtls_free( X->p );
|
|
}
|
|
|
|
X->n = i;
|
|
X->p = p;
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/* Resize X to have exactly n limbs and set it to 0. */
|
|
static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
|
|
{
|
|
if( limbs == 0 )
|
|
{
|
|
mbedtls_mpi_free( X );
|
|
return( 0 );
|
|
}
|
|
else if( X->n == limbs )
|
|
{
|
|
memset( X->p, 0, limbs * ciL );
|
|
X->s = 1;
|
|
return( 0 );
|
|
}
|
|
else
|
|
{
|
|
mbedtls_mpi_free( X );
|
|
return( mbedtls_mpi_grow( X, limbs ) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the contents of Y into X.
|
|
*
|
|
* This function is not constant-time. Leading zeros in Y may be removed.
|
|
*
|
|
* Ensure that X does not shrink. This is not guaranteed by the public API,
|
|
* but some code in the bignum module relies on this property, for example
|
|
* in mbedtls_mpi_exp_mod().
|
|
*/
|
|
int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
|
|
{
|
|
int ret = 0;
|
|
size_t i;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( Y != NULL );
|
|
|
|
if( X == Y )
|
|
return( 0 );
|
|
|
|
if( Y->n == 0 )
|
|
{
|
|
if( X->n != 0 )
|
|
{
|
|
X->s = 1;
|
|
memset( X->p, 0, X->n * ciL );
|
|
}
|
|
return( 0 );
|
|
}
|
|
|
|
for( i = Y->n - 1; i > 0; i-- )
|
|
if( Y->p[i] != 0 )
|
|
break;
|
|
i++;
|
|
|
|
X->s = Y->s;
|
|
|
|
if( X->n < i )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
|
|
}
|
|
else
|
|
{
|
|
memset( X->p + i, 0, ( X->n - i ) * ciL );
|
|
}
|
|
|
|
memcpy( X->p, Y->p, i * ciL );
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Swap the contents of X and Y
|
|
*/
|
|
void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
|
|
{
|
|
mbedtls_mpi T;
|
|
MPI_VALIDATE( X != NULL );
|
|
MPI_VALIDATE( Y != NULL );
|
|
|
|
memcpy( &T, X, sizeof( mbedtls_mpi ) );
|
|
memcpy( X, Y, sizeof( mbedtls_mpi ) );
|
|
memcpy( Y, &T, sizeof( mbedtls_mpi ) );
|
|
}
|
|
|
|
/*
|
|
* Set value from integer
|
|
*/
|
|
int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
|
|
memset( X->p, 0, X->n * ciL );
|
|
|
|
X->p[0] = ( z < 0 ) ? -z : z;
|
|
X->s = ( z < 0 ) ? -1 : 1;
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Get a specific bit
|
|
*/
|
|
int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
|
|
{
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
if( X->n * biL <= pos )
|
|
return( 0 );
|
|
|
|
return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
|
|
}
|
|
|
|
/* Get a specific byte, without range checks. */
|
|
#define GET_BYTE( X, i ) \
|
|
( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
|
|
|
|
/*
|
|
* Set a bit to a specific value of 0 or 1
|
|
*/
|
|
int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
|
|
{
|
|
int ret = 0;
|
|
size_t off = pos / biL;
|
|
size_t idx = pos % biL;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
if( val != 0 && val != 1 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
if( X->n * biL <= pos )
|
|
{
|
|
if( val == 0 )
|
|
return( 0 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
|
|
}
|
|
|
|
X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
|
|
X->p[off] |= (mbedtls_mpi_uint) val << idx;
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Return the number of less significant zero-bits
|
|
*/
|
|
size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
|
|
{
|
|
size_t i, j, count = 0;
|
|
MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
|
|
|
|
for( i = 0; i < X->n; i++ )
|
|
for( j = 0; j < biL; j++, count++ )
|
|
if( ( ( X->p[i] >> j ) & 1 ) != 0 )
|
|
return( count );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Count leading zero bits in a given integer
|
|
*/
|
|
static size_t mbedtls_clz( const mbedtls_mpi_uint x )
|
|
{
|
|
size_t j;
|
|
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
|
|
|
|
for( j = 0; j < biL; j++ )
|
|
{
|
|
if( x & mask ) break;
|
|
|
|
mask >>= 1;
|
|
}
|
|
|
|
return j;
|
|
}
|
|
|
|
/*
|
|
* Return the number of bits
|
|
*/
|
|
size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
|
|
{
|
|
size_t i, j;
|
|
|
|
if( X->n == 0 )
|
|
return( 0 );
|
|
|
|
for( i = X->n - 1; i > 0; i-- )
|
|
if( X->p[i] != 0 )
|
|
break;
|
|
|
|
j = biL - mbedtls_clz( X->p[i] );
|
|
|
|
return( ( i * biL ) + j );
|
|
}
|
|
|
|
/*
|
|
* Return the total size in bytes
|
|
*/
|
|
size_t mbedtls_mpi_size( const mbedtls_mpi *X )
|
|
{
|
|
return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
|
|
}
|
|
|
|
/*
|
|
* Convert an ASCII character to digit value
|
|
*/
|
|
static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
|
|
{
|
|
*d = 255;
|
|
|
|
if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
|
|
if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
|
|
if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
|
|
|
|
if( *d >= (mbedtls_mpi_uint) radix )
|
|
return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Import from an ASCII string
|
|
*/
|
|
int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i, j, slen, n;
|
|
int sign = 1;
|
|
mbedtls_mpi_uint d;
|
|
mbedtls_mpi T;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( s != NULL );
|
|
|
|
if( radix < 2 || radix > 16 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
mbedtls_mpi_init( &T );
|
|
|
|
if( s[0] == 0 )
|
|
{
|
|
mbedtls_mpi_free( X );
|
|
return( 0 );
|
|
}
|
|
|
|
if( s[0] == '-' )
|
|
{
|
|
++s;
|
|
sign = -1;
|
|
}
|
|
|
|
slen = strlen( s );
|
|
|
|
if( radix == 16 )
|
|
{
|
|
if( slen > MPI_SIZE_T_MAX >> 2 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
n = BITS_TO_LIMBS( slen << 2 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
|
|
|
|
for( i = slen, j = 0; i > 0; i--, j++ )
|
|
{
|
|
MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
|
|
X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
|
|
|
|
for( i = 0; i < slen; i++ )
|
|
{
|
|
MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
|
|
}
|
|
}
|
|
|
|
if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
|
|
X->s = -1;
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &T );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Helper to write the digits high-order first.
|
|
*/
|
|
static int mpi_write_hlp( mbedtls_mpi *X, int radix,
|
|
char **p, const size_t buflen )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
mbedtls_mpi_uint r;
|
|
size_t length = 0;
|
|
char *p_end = *p + buflen;
|
|
|
|
do
|
|
{
|
|
if( length >= buflen )
|
|
{
|
|
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
|
|
/*
|
|
* Write the residue in the current position, as an ASCII character.
|
|
*/
|
|
if( r < 0xA )
|
|
*(--p_end) = (char)( '0' + r );
|
|
else
|
|
*(--p_end) = (char)( 'A' + ( r - 0xA ) );
|
|
|
|
length++;
|
|
} while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
|
|
|
|
memmove( *p, p_end, length );
|
|
*p += length;
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Export into an ASCII string
|
|
*/
|
|
int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
|
|
char *buf, size_t buflen, size_t *olen )
|
|
{
|
|
int ret = 0;
|
|
size_t n;
|
|
char *p;
|
|
mbedtls_mpi T;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( olen != NULL );
|
|
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
|
|
|
|
if( radix < 2 || radix > 16 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
|
|
if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
|
|
* `n`. If radix > 4, this might be a strict
|
|
* overapproximation of the number of
|
|
* radix-adic digits needed to present `n`. */
|
|
if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
|
|
* present `n`. */
|
|
|
|
n += 1; /* Terminating null byte */
|
|
n += 1; /* Compensate for the divisions above, which round down `n`
|
|
* in case it's not even. */
|
|
n += 1; /* Potential '-'-sign. */
|
|
n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
|
|
* which always uses an even number of hex-digits. */
|
|
|
|
if( buflen < n )
|
|
{
|
|
*olen = n;
|
|
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
|
|
}
|
|
|
|
p = buf;
|
|
mbedtls_mpi_init( &T );
|
|
|
|
if( X->s == -1 )
|
|
{
|
|
*p++ = '-';
|
|
buflen--;
|
|
}
|
|
|
|
if( radix == 16 )
|
|
{
|
|
int c;
|
|
size_t i, j, k;
|
|
|
|
for( i = X->n, k = 0; i > 0; i-- )
|
|
{
|
|
for( j = ciL; j > 0; j-- )
|
|
{
|
|
c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
|
|
|
|
if( c == 0 && k == 0 && ( i + j ) != 2 )
|
|
continue;
|
|
|
|
*(p++) = "0123456789ABCDEF" [c / 16];
|
|
*(p++) = "0123456789ABCDEF" [c % 16];
|
|
k = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
|
|
|
|
if( T.s == -1 )
|
|
T.s = 1;
|
|
|
|
MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
|
|
}
|
|
|
|
*p++ = '\0';
|
|
*olen = p - buf;
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &T );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#if defined(MBEDTLS_FS_IO)
|
|
/*
|
|
* Read X from an opened file
|
|
*/
|
|
int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
|
|
{
|
|
mbedtls_mpi_uint d;
|
|
size_t slen;
|
|
char *p;
|
|
/*
|
|
* Buffer should have space for (short) label and decimal formatted MPI,
|
|
* newline characters and '\0'
|
|
*/
|
|
char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( fin != NULL );
|
|
|
|
if( radix < 2 || radix > 16 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
memset( s, 0, sizeof( s ) );
|
|
if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
|
|
return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
|
|
|
|
slen = strlen( s );
|
|
if( slen == sizeof( s ) - 2 )
|
|
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
|
|
|
|
if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
|
|
if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
|
|
|
|
p = s + slen;
|
|
while( p-- > s )
|
|
if( mpi_get_digit( &d, radix, *p ) != 0 )
|
|
break;
|
|
|
|
return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
|
|
}
|
|
|
|
/*
|
|
* Write X into an opened file (or stdout if fout == NULL)
|
|
*/
|
|
int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t n, slen, plen;
|
|
/*
|
|
* Buffer should have space for (short) label and decimal formatted MPI,
|
|
* newline characters and '\0'
|
|
*/
|
|
char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
if( radix < 2 || radix > 16 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
memset( s, 0, sizeof( s ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
|
|
|
|
if( p == NULL ) p = "";
|
|
|
|
plen = strlen( p );
|
|
slen = strlen( s );
|
|
s[slen++] = '\r';
|
|
s[slen++] = '\n';
|
|
|
|
if( fout != NULL )
|
|
{
|
|
if( fwrite( p, 1, plen, fout ) != plen ||
|
|
fwrite( s, 1, slen, fout ) != slen )
|
|
return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
|
|
}
|
|
else
|
|
mbedtls_printf( "%s%s", p, s );
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
#endif /* MBEDTLS_FS_IO */
|
|
|
|
|
|
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
|
|
* into the storage form used by mbedtls_mpi. */
|
|
|
|
static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
|
|
{
|
|
uint8_t i;
|
|
unsigned char *x_ptr;
|
|
mbedtls_mpi_uint tmp = 0;
|
|
|
|
for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
|
|
{
|
|
tmp <<= CHAR_BIT;
|
|
tmp |= (mbedtls_mpi_uint) *x_ptr;
|
|
}
|
|
|
|
return( tmp );
|
|
}
|
|
|
|
static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
|
|
{
|
|
#if defined(__BYTE_ORDER__)
|
|
|
|
/* Nothing to do on bigendian systems. */
|
|
#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
|
|
return( x );
|
|
#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
|
|
|
|
#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
|
|
|
|
/* For GCC and Clang, have builtins for byte swapping. */
|
|
#if defined(__GNUC__) && defined(__GNUC_PREREQ)
|
|
#if __GNUC_PREREQ(4,3)
|
|
#define have_bswap
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__clang__) && defined(__has_builtin)
|
|
#if __has_builtin(__builtin_bswap32) && \
|
|
__has_builtin(__builtin_bswap64)
|
|
#define have_bswap
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(have_bswap)
|
|
/* The compiler is hopefully able to statically evaluate this! */
|
|
switch( sizeof(mbedtls_mpi_uint) )
|
|
{
|
|
case 4:
|
|
return( __builtin_bswap32(x) );
|
|
case 8:
|
|
return( __builtin_bswap64(x) );
|
|
}
|
|
#endif
|
|
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
|
|
#endif /* __BYTE_ORDER__ */
|
|
|
|
/* Fall back to C-based reordering if we don't know the byte order
|
|
* or we couldn't use a compiler-specific builtin. */
|
|
return( mpi_uint_bigendian_to_host_c( x ) );
|
|
}
|
|
|
|
static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
|
|
{
|
|
mbedtls_mpi_uint *cur_limb_left;
|
|
mbedtls_mpi_uint *cur_limb_right;
|
|
if( limbs == 0 )
|
|
return;
|
|
|
|
/*
|
|
* Traverse limbs and
|
|
* - adapt byte-order in each limb
|
|
* - swap the limbs themselves.
|
|
* For that, simultaneously traverse the limbs from left to right
|
|
* and from right to left, as long as the left index is not bigger
|
|
* than the right index (it's not a problem if limbs is odd and the
|
|
* indices coincide in the last iteration).
|
|
*/
|
|
for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
|
|
cur_limb_left <= cur_limb_right;
|
|
cur_limb_left++, cur_limb_right-- )
|
|
{
|
|
mbedtls_mpi_uint tmp;
|
|
/* Note that if cur_limb_left == cur_limb_right,
|
|
* this code effectively swaps the bytes only once. */
|
|
tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
|
|
*cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
|
|
*cur_limb_right = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Import X from unsigned binary data, little endian
|
|
*/
|
|
int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
|
|
const unsigned char *buf, size_t buflen )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i;
|
|
size_t const limbs = CHARS_TO_LIMBS( buflen );
|
|
|
|
/* Ensure that target MPI has exactly the necessary number of limbs */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
|
|
|
|
for( i = 0; i < buflen; i++ )
|
|
X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
|
|
|
|
cleanup:
|
|
|
|
/*
|
|
* This function is also used to import keys. However, wiping the buffers
|
|
* upon failure is not necessary because failure only can happen before any
|
|
* input is copied.
|
|
*/
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Import X from unsigned binary data, big endian
|
|
*/
|
|
int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t const limbs = CHARS_TO_LIMBS( buflen );
|
|
size_t const overhead = ( limbs * ciL ) - buflen;
|
|
unsigned char *Xp;
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
|
|
|
|
/* Ensure that target MPI has exactly the necessary number of limbs */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
|
|
|
|
/* Avoid calling `memcpy` with NULL source or destination argument,
|
|
* even if buflen is 0. */
|
|
if( buflen != 0 )
|
|
{
|
|
Xp = (unsigned char*) X->p;
|
|
memcpy( Xp + overhead, buf, buflen );
|
|
|
|
mpi_bigendian_to_host( X->p, limbs );
|
|
}
|
|
|
|
cleanup:
|
|
|
|
/*
|
|
* This function is also used to import keys. However, wiping the buffers
|
|
* upon failure is not necessary because failure only can happen before any
|
|
* input is copied.
|
|
*/
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Export X into unsigned binary data, little endian
|
|
*/
|
|
int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
|
|
unsigned char *buf, size_t buflen )
|
|
{
|
|
size_t stored_bytes = X->n * ciL;
|
|
size_t bytes_to_copy;
|
|
size_t i;
|
|
|
|
if( stored_bytes < buflen )
|
|
{
|
|
bytes_to_copy = stored_bytes;
|
|
}
|
|
else
|
|
{
|
|
bytes_to_copy = buflen;
|
|
|
|
/* The output buffer is smaller than the allocated size of X.
|
|
* However X may fit if its leading bytes are zero. */
|
|
for( i = bytes_to_copy; i < stored_bytes; i++ )
|
|
{
|
|
if( GET_BYTE( X, i ) != 0 )
|
|
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
|
|
}
|
|
}
|
|
|
|
for( i = 0; i < bytes_to_copy; i++ )
|
|
buf[i] = GET_BYTE( X, i );
|
|
|
|
if( stored_bytes < buflen )
|
|
{
|
|
/* Write trailing 0 bytes */
|
|
memset( buf + stored_bytes, 0, buflen - stored_bytes );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Export X into unsigned binary data, big endian
|
|
*/
|
|
int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
|
|
unsigned char *buf, size_t buflen )
|
|
{
|
|
size_t stored_bytes;
|
|
size_t bytes_to_copy;
|
|
unsigned char *p;
|
|
size_t i;
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
|
|
|
|
stored_bytes = X->n * ciL;
|
|
|
|
if( stored_bytes < buflen )
|
|
{
|
|
/* There is enough space in the output buffer. Write initial
|
|
* null bytes and record the position at which to start
|
|
* writing the significant bytes. In this case, the execution
|
|
* trace of this function does not depend on the value of the
|
|
* number. */
|
|
bytes_to_copy = stored_bytes;
|
|
p = buf + buflen - stored_bytes;
|
|
memset( buf, 0, buflen - stored_bytes );
|
|
}
|
|
else
|
|
{
|
|
/* The output buffer is smaller than the allocated size of X.
|
|
* However X may fit if its leading bytes are zero. */
|
|
bytes_to_copy = buflen;
|
|
p = buf;
|
|
for( i = bytes_to_copy; i < stored_bytes; i++ )
|
|
{
|
|
if( GET_BYTE( X, i ) != 0 )
|
|
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
|
|
}
|
|
}
|
|
|
|
for( i = 0; i < bytes_to_copy; i++ )
|
|
p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Left-shift: X <<= count
|
|
*/
|
|
int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i, v0, t1;
|
|
mbedtls_mpi_uint r0 = 0, r1;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
v0 = count / (biL );
|
|
t1 = count & (biL - 1);
|
|
|
|
i = mbedtls_mpi_bitlen( X ) + count;
|
|
|
|
if( X->n * biL < i )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* shift by count / limb_size
|
|
*/
|
|
if( v0 > 0 )
|
|
{
|
|
for( i = X->n; i > v0; i-- )
|
|
X->p[i - 1] = X->p[i - v0 - 1];
|
|
|
|
for( ; i > 0; i-- )
|
|
X->p[i - 1] = 0;
|
|
}
|
|
|
|
/*
|
|
* shift by count % limb_size
|
|
*/
|
|
if( t1 > 0 )
|
|
{
|
|
for( i = v0; i < X->n; i++ )
|
|
{
|
|
r1 = X->p[i] >> (biL - t1);
|
|
X->p[i] <<= t1;
|
|
X->p[i] |= r0;
|
|
r0 = r1;
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Right-shift: X >>= count
|
|
*/
|
|
int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
|
|
{
|
|
size_t i, v0, v1;
|
|
mbedtls_mpi_uint r0 = 0, r1;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
v0 = count / biL;
|
|
v1 = count & (biL - 1);
|
|
|
|
if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
|
|
return mbedtls_mpi_lset( X, 0 );
|
|
|
|
/*
|
|
* shift by count / limb_size
|
|
*/
|
|
if( v0 > 0 )
|
|
{
|
|
for( i = 0; i < X->n - v0; i++ )
|
|
X->p[i] = X->p[i + v0];
|
|
|
|
for( ; i < X->n; i++ )
|
|
X->p[i] = 0;
|
|
}
|
|
|
|
/*
|
|
* shift by count % limb_size
|
|
*/
|
|
if( v1 > 0 )
|
|
{
|
|
for( i = X->n; i > 0; i-- )
|
|
{
|
|
r1 = X->p[i - 1] << (biL - v1);
|
|
X->p[i - 1] >>= v1;
|
|
X->p[i - 1] |= r0;
|
|
r0 = r1;
|
|
}
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Compare unsigned values
|
|
*/
|
|
int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
|
{
|
|
size_t i, j;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( Y != NULL );
|
|
|
|
for( i = X->n; i > 0; i-- )
|
|
if( X->p[i - 1] != 0 )
|
|
break;
|
|
|
|
for( j = Y->n; j > 0; j-- )
|
|
if( Y->p[j - 1] != 0 )
|
|
break;
|
|
|
|
if( i == 0 && j == 0 )
|
|
return( 0 );
|
|
|
|
if( i > j ) return( 1 );
|
|
if( j > i ) return( -1 );
|
|
|
|
for( ; i > 0; i-- )
|
|
{
|
|
if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
|
|
if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Compare signed values
|
|
*/
|
|
int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
|
{
|
|
size_t i, j;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( Y != NULL );
|
|
|
|
for( i = X->n; i > 0; i-- )
|
|
if( X->p[i - 1] != 0 )
|
|
break;
|
|
|
|
for( j = Y->n; j > 0; j-- )
|
|
if( Y->p[j - 1] != 0 )
|
|
break;
|
|
|
|
if( i == 0 && j == 0 )
|
|
return( 0 );
|
|
|
|
if( i > j ) return( X->s );
|
|
if( j > i ) return( -Y->s );
|
|
|
|
if( X->s > 0 && Y->s < 0 ) return( 1 );
|
|
if( Y->s > 0 && X->s < 0 ) return( -1 );
|
|
|
|
for( ; i > 0; i-- )
|
|
{
|
|
if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
|
|
if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Compare signed values
|
|
*/
|
|
int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
|
|
{
|
|
mbedtls_mpi Y;
|
|
mbedtls_mpi_uint p[1];
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
|
|
*p = ( z < 0 ) ? -z : z;
|
|
Y.s = ( z < 0 ) ? -1 : 1;
|
|
Y.n = 1;
|
|
Y.p = p;
|
|
|
|
return( mbedtls_mpi_cmp_mpi( X, &Y ) );
|
|
}
|
|
|
|
/*
|
|
* Unsigned addition: X = |A| + |B| (HAC 14.7)
|
|
*/
|
|
int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i, j;
|
|
mbedtls_mpi_uint *o, *p, c, tmp;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
if( X == B )
|
|
{
|
|
const mbedtls_mpi *T = A; A = X; B = T;
|
|
}
|
|
|
|
if( X != A )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
|
|
|
|
/*
|
|
* X should always be positive as a result of unsigned additions.
|
|
*/
|
|
X->s = 1;
|
|
|
|
for( j = B->n; j > 0; j-- )
|
|
if( B->p[j - 1] != 0 )
|
|
break;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
|
|
|
|
o = B->p; p = X->p; c = 0;
|
|
|
|
/*
|
|
* tmp is used because it might happen that p == o
|
|
*/
|
|
for( i = 0; i < j; i++, o++, p++ )
|
|
{
|
|
tmp= *o;
|
|
*p += c; c = ( *p < c );
|
|
*p += tmp; c += ( *p < tmp );
|
|
}
|
|
|
|
while( c != 0 )
|
|
{
|
|
if( i >= X->n )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
|
|
p = X->p + i;
|
|
}
|
|
|
|
*p += c; c = ( *p < c ); i++; p++;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/**
|
|
* Helper for mbedtls_mpi subtraction.
|
|
*
|
|
* Calculate l - r where l and r have the same size.
|
|
* This function operates modulo (2^ciL)^n and returns the carry
|
|
* (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
|
|
*
|
|
* d may be aliased to l or r.
|
|
*
|
|
* \param n Number of limbs of \p d, \p l and \p r.
|
|
* \param[out] d The result of the subtraction.
|
|
* \param[in] l The left operand.
|
|
* \param[in] r The right operand.
|
|
*
|
|
* \return 1 if `l < r`.
|
|
* 0 if `l >= r`.
|
|
*/
|
|
static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
|
|
mbedtls_mpi_uint *d,
|
|
const mbedtls_mpi_uint *l,
|
|
const mbedtls_mpi_uint *r )
|
|
{
|
|
size_t i;
|
|
mbedtls_mpi_uint c = 0, t, z;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
z = ( l[i] < c ); t = l[i] - c;
|
|
c = ( t < r[i] ) + z; d[i] = t - r[i];
|
|
}
|
|
|
|
return( c );
|
|
}
|
|
|
|
/*
|
|
* Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
|
|
*/
|
|
int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t n;
|
|
mbedtls_mpi_uint carry;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
for( n = B->n; n > 0; n-- )
|
|
if( B->p[n - 1] != 0 )
|
|
break;
|
|
if( n > A->n )
|
|
{
|
|
/* B >= (2^ciL)^n > A */
|
|
ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
|
|
goto cleanup;
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
|
|
|
|
/* Set the high limbs of X to match A. Don't touch the lower limbs
|
|
* because X might be aliased to B, and we must not overwrite the
|
|
* significant digits of B. */
|
|
if( A->n > n )
|
|
memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
|
|
if( X->n > A->n )
|
|
memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
|
|
|
|
carry = mpi_sub_hlp( n, X->p, A->p, B->p );
|
|
if( carry != 0 )
|
|
{
|
|
/* Propagate the carry to the first nonzero limb of X. */
|
|
for( ; n < X->n && X->p[n] == 0; n++ )
|
|
--X->p[n];
|
|
/* If we ran out of space for the carry, it means that the result
|
|
* is negative. */
|
|
if( n == X->n )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
|
|
goto cleanup;
|
|
}
|
|
--X->p[n];
|
|
}
|
|
|
|
/* X should always be positive as a result of unsigned subtractions. */
|
|
X->s = 1;
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Signed addition: X = A + B
|
|
*/
|
|
int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret, s;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
s = A->s;
|
|
if( A->s * B->s < 0 )
|
|
{
|
|
if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
|
|
X->s = s;
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
|
|
X->s = -s;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
|
|
X->s = s;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Signed subtraction: X = A - B
|
|
*/
|
|
int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret, s;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
s = A->s;
|
|
if( A->s * B->s > 0 )
|
|
{
|
|
if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
|
|
X->s = s;
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
|
|
X->s = -s;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
|
|
X->s = s;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Signed addition: X = A + b
|
|
*/
|
|
int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
|
|
{
|
|
mbedtls_mpi B;
|
|
mbedtls_mpi_uint p[1];
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
|
|
p[0] = ( b < 0 ) ? -b : b;
|
|
B.s = ( b < 0 ) ? -1 : 1;
|
|
B.n = 1;
|
|
B.p = p;
|
|
|
|
return( mbedtls_mpi_add_mpi( X, A, &B ) );
|
|
}
|
|
|
|
/*
|
|
* Signed subtraction: X = A - b
|
|
*/
|
|
int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
|
|
{
|
|
mbedtls_mpi B;
|
|
mbedtls_mpi_uint p[1];
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
|
|
p[0] = ( b < 0 ) ? -b : b;
|
|
B.s = ( b < 0 ) ? -1 : 1;
|
|
B.n = 1;
|
|
B.p = p;
|
|
|
|
return( mbedtls_mpi_sub_mpi( X, A, &B ) );
|
|
}
|
|
|
|
/** Helper for mbedtls_mpi multiplication.
|
|
*
|
|
* Add \p b * \p s to \p d.
|
|
*
|
|
* \param i The number of limbs of \p s.
|
|
* \param[in] s A bignum to multiply, of size \p i.
|
|
* It may overlap with \p d, but only if
|
|
* \p d <= \p s.
|
|
* Its leading limb must not be \c 0.
|
|
* \param[in,out] d The bignum to add to.
|
|
* It must be sufficiently large to store the
|
|
* result of the multiplication. This means
|
|
* \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
|
|
* is not known a priori.
|
|
* \param b A scalar to multiply.
|
|
*/
|
|
static
|
|
#if defined(__APPLE__) && defined(__arm__)
|
|
/*
|
|
* Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
|
|
* appears to need this to prevent bad ARM code generation at -O3.
|
|
*/
|
|
__attribute__ ((noinline))
|
|
#endif
|
|
void mpi_mul_hlp( size_t i,
|
|
const mbedtls_mpi_uint *s,
|
|
mbedtls_mpi_uint *d,
|
|
mbedtls_mpi_uint b )
|
|
{
|
|
mbedtls_mpi_uint c = 0, t = 0;
|
|
|
|
#if defined(MULADDC_HUIT)
|
|
for( ; i >= 8; i -= 8 )
|
|
{
|
|
MULADDC_INIT
|
|
MULADDC_HUIT
|
|
MULADDC_STOP
|
|
}
|
|
|
|
for( ; i > 0; i-- )
|
|
{
|
|
MULADDC_INIT
|
|
MULADDC_CORE
|
|
MULADDC_STOP
|
|
}
|
|
#else /* MULADDC_HUIT */
|
|
for( ; i >= 16; i -= 16 )
|
|
{
|
|
MULADDC_INIT
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_STOP
|
|
}
|
|
|
|
for( ; i >= 8; i -= 8 )
|
|
{
|
|
MULADDC_INIT
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_CORE MULADDC_CORE
|
|
MULADDC_STOP
|
|
}
|
|
|
|
for( ; i > 0; i-- )
|
|
{
|
|
MULADDC_INIT
|
|
MULADDC_CORE
|
|
MULADDC_STOP
|
|
}
|
|
#endif /* MULADDC_HUIT */
|
|
|
|
t++;
|
|
|
|
while( c != 0 )
|
|
{
|
|
*d += c; c = ( *d < c ); d++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Baseline multiplication: X = A * B (HAC 14.12)
|
|
*/
|
|
int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i, j;
|
|
mbedtls_mpi TA, TB;
|
|
int result_is_zero = 0;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
|
|
|
|
if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
|
|
if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
|
|
|
|
for( i = A->n; i > 0; i-- )
|
|
if( A->p[i - 1] != 0 )
|
|
break;
|
|
if( i == 0 )
|
|
result_is_zero = 1;
|
|
|
|
for( j = B->n; j > 0; j-- )
|
|
if( B->p[j - 1] != 0 )
|
|
break;
|
|
if( j == 0 )
|
|
result_is_zero = 1;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
|
|
|
|
for( ; j > 0; j-- )
|
|
mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
|
|
|
|
/* If the result is 0, we don't shortcut the operation, which reduces
|
|
* but does not eliminate side channels leaking the zero-ness. We do
|
|
* need to take care to set the sign bit properly since the library does
|
|
* not fully support an MPI object with a value of 0 and s == -1. */
|
|
if( result_is_zero )
|
|
X->s = 1;
|
|
else
|
|
X->s = A->s * B->s;
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Baseline multiplication: X = A * b
|
|
*/
|
|
int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
|
|
{
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
|
|
/* mpi_mul_hlp can't deal with a leading 0. */
|
|
size_t n = A->n;
|
|
while( n > 0 && A->p[n - 1] == 0 )
|
|
--n;
|
|
|
|
/* The general method below doesn't work if n==0 or b==0. By chance
|
|
* calculating the result is trivial in those cases. */
|
|
if( b == 0 || n == 0 )
|
|
{
|
|
return( mbedtls_mpi_lset( X, 0 ) );
|
|
}
|
|
|
|
/* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
/* In general, A * b requires 1 limb more than b. If
|
|
* A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
|
|
* number of limbs as A and the call to grow() is not required since
|
|
* copy() will take care of the growth if needed. However, experimentally,
|
|
* making the call to grow() unconditional causes slightly fewer
|
|
* calls to calloc() in ECP code, presumably because it reuses the
|
|
* same mpi for a while and this way the mpi is more likely to directly
|
|
* grow to its final size. */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
|
|
mpi_mul_hlp( n, A->p, X->p, b - 1 );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
|
|
* mbedtls_mpi_uint divisor, d
|
|
*/
|
|
static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
|
|
mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
|
|
{
|
|
#if defined(MBEDTLS_HAVE_UDBL)
|
|
mbedtls_t_udbl dividend, quotient;
|
|
#else
|
|
const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
|
|
const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
|
|
mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
|
|
mbedtls_mpi_uint u0_msw, u0_lsw;
|
|
size_t s;
|
|
#endif
|
|
|
|
/*
|
|
* Check for overflow
|
|
*/
|
|
if( 0 == d || u1 >= d )
|
|
{
|
|
if (r != NULL) *r = ~0;
|
|
|
|
return ( ~0 );
|
|
}
|
|
|
|
#if defined(MBEDTLS_HAVE_UDBL)
|
|
dividend = (mbedtls_t_udbl) u1 << biL;
|
|
dividend |= (mbedtls_t_udbl) u0;
|
|
quotient = dividend / d;
|
|
if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
|
|
quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
|
|
|
|
if( r != NULL )
|
|
*r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
|
|
|
|
return (mbedtls_mpi_uint) quotient;
|
|
#else
|
|
|
|
/*
|
|
* Algorithm D, Section 4.3.1 - The Art of Computer Programming
|
|
* Vol. 2 - Seminumerical Algorithms, Knuth
|
|
*/
|
|
|
|
/*
|
|
* Normalize the divisor, d, and dividend, u0, u1
|
|
*/
|
|
s = mbedtls_clz( d );
|
|
d = d << s;
|
|
|
|
u1 = u1 << s;
|
|
u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
|
|
u0 = u0 << s;
|
|
|
|
d1 = d >> biH;
|
|
d0 = d & uint_halfword_mask;
|
|
|
|
u0_msw = u0 >> biH;
|
|
u0_lsw = u0 & uint_halfword_mask;
|
|
|
|
/*
|
|
* Find the first quotient and remainder
|
|
*/
|
|
q1 = u1 / d1;
|
|
r0 = u1 - d1 * q1;
|
|
|
|
while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
|
|
{
|
|
q1 -= 1;
|
|
r0 += d1;
|
|
|
|
if ( r0 >= radix ) break;
|
|
}
|
|
|
|
rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
|
|
q0 = rAX / d1;
|
|
r0 = rAX - q0 * d1;
|
|
|
|
while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
|
|
{
|
|
q0 -= 1;
|
|
r0 += d1;
|
|
|
|
if ( r0 >= radix ) break;
|
|
}
|
|
|
|
if (r != NULL)
|
|
*r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
|
|
|
|
quotient = q1 * radix + q0;
|
|
|
|
return quotient;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
|
|
*/
|
|
int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
|
|
const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t i, n, t, k;
|
|
mbedtls_mpi X, Y, Z, T1, T2;
|
|
mbedtls_mpi_uint TP2[3];
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
|
|
return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
|
|
|
|
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
|
|
mbedtls_mpi_init( &T1 );
|
|
/*
|
|
* Avoid dynamic memory allocations for constant-size T2.
|
|
*
|
|
* T2 is used for comparison only and the 3 limbs are assigned explicitly,
|
|
* so nobody increase the size of the MPI and we're safe to use an on-stack
|
|
* buffer.
|
|
*/
|
|
T2.s = 1;
|
|
T2.n = sizeof( TP2 ) / sizeof( *TP2 );
|
|
T2.p = TP2;
|
|
|
|
if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
|
|
{
|
|
if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
|
|
if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
|
|
return( 0 );
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
|
|
X.s = Y.s = 1;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
|
|
|
|
k = mbedtls_mpi_bitlen( &Y ) % biL;
|
|
if( k < biL - 1 )
|
|
{
|
|
k = biL - 1 - k;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
|
|
}
|
|
else k = 0;
|
|
|
|
n = X.n - 1;
|
|
t = Y.n - 1;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
|
|
|
|
while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
|
|
{
|
|
Z.p[n - t]++;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
|
|
}
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
|
|
|
|
for( i = n; i > t ; i-- )
|
|
{
|
|
if( X.p[i] >= Y.p[t] )
|
|
Z.p[i - t - 1] = ~0;
|
|
else
|
|
{
|
|
Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
|
|
Y.p[t], NULL);
|
|
}
|
|
|
|
T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
|
|
T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
|
|
T2.p[2] = X.p[i];
|
|
|
|
Z.p[i - t - 1]++;
|
|
do
|
|
{
|
|
Z.p[i - t - 1]--;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
|
|
T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
|
|
T1.p[1] = Y.p[t];
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
|
|
}
|
|
while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
|
|
|
|
if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
|
|
Z.p[i - t - 1]--;
|
|
}
|
|
}
|
|
|
|
if( Q != NULL )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
|
|
Q->s = A->s * B->s;
|
|
}
|
|
|
|
if( R != NULL )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
|
|
X.s = A->s;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
|
|
|
|
if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
|
|
R->s = 1;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
|
|
mbedtls_mpi_free( &T1 );
|
|
mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Division by int: A = Q * b + R
|
|
*/
|
|
int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
|
|
const mbedtls_mpi *A,
|
|
mbedtls_mpi_sint b )
|
|
{
|
|
mbedtls_mpi B;
|
|
mbedtls_mpi_uint p[1];
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
|
|
p[0] = ( b < 0 ) ? -b : b;
|
|
B.s = ( b < 0 ) ? -1 : 1;
|
|
B.n = 1;
|
|
B.p = p;
|
|
|
|
return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
|
|
}
|
|
|
|
/*
|
|
* Modulo: R = A mod B
|
|
*/
|
|
int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
MPI_VALIDATE_RET( R != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
|
|
return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
|
|
|
|
while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
|
|
|
|
while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Modulo: r = A mod b
|
|
*/
|
|
int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
|
|
{
|
|
size_t i;
|
|
mbedtls_mpi_uint x, y, z;
|
|
MPI_VALIDATE_RET( r != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
|
|
if( b == 0 )
|
|
return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
|
|
|
|
if( b < 0 )
|
|
return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
|
|
|
|
/*
|
|
* handle trivial cases
|
|
*/
|
|
if( b == 1 )
|
|
{
|
|
*r = 0;
|
|
return( 0 );
|
|
}
|
|
|
|
if( b == 2 )
|
|
{
|
|
*r = A->p[0] & 1;
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* general case
|
|
*/
|
|
for( i = A->n, y = 0; i > 0; i-- )
|
|
{
|
|
x = A->p[i - 1];
|
|
y = ( y << biH ) | ( x >> biH );
|
|
z = y / b;
|
|
y -= z * b;
|
|
|
|
x <<= biH;
|
|
y = ( y << biH ) | ( x >> biH );
|
|
z = y / b;
|
|
y -= z * b;
|
|
}
|
|
|
|
/*
|
|
* If A is negative, then the current y represents a negative value.
|
|
* Flipping it to the positive side.
|
|
*/
|
|
if( A->s < 0 && y != 0 )
|
|
y = b - y;
|
|
|
|
*r = y;
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Fast Montgomery initialization (thanks to Tom St Denis)
|
|
*/
|
|
static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
|
|
{
|
|
mbedtls_mpi_uint x, m0 = N->p[0];
|
|
unsigned int i;
|
|
|
|
x = m0;
|
|
x += ( ( m0 + 2 ) & 4 ) << 1;
|
|
|
|
for( i = biL; i >= 8; i /= 2 )
|
|
x *= ( 2 - ( m0 * x ) );
|
|
|
|
*mm = ~x + 1;
|
|
}
|
|
|
|
/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
|
|
*
|
|
* \param[in,out] A One of the numbers to multiply.
|
|
* It must have at least as many limbs as N
|
|
* (A->n >= N->n), and any limbs beyond n are ignored.
|
|
* On successful completion, A contains the result of
|
|
* the multiplication A * B * R^-1 mod N where
|
|
* R = (2^ciL)^n.
|
|
* \param[in] B One of the numbers to multiply.
|
|
* It must be nonzero and must not have more limbs than N
|
|
* (B->n <= N->n).
|
|
* \param[in] N The modulo. N must be odd.
|
|
* \param mm The value calculated by `mpi_montg_init(&mm, N)`.
|
|
* This is -N^-1 mod 2^ciL.
|
|
* \param[in,out] T A bignum for temporary storage.
|
|
* It must be at least twice the limb size of N plus 2
|
|
* (T->n >= 2 * (N->n + 1)).
|
|
* Its initial content is unused and
|
|
* its final content is indeterminate.
|
|
* Note that unlike the usual convention in the library
|
|
* for `const mbedtls_mpi*`, the content of T can change.
|
|
*/
|
|
static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
|
|
const mbedtls_mpi *T )
|
|
{
|
|
size_t i, n, m;
|
|
mbedtls_mpi_uint u0, u1, *d;
|
|
|
|
memset( T->p, 0, T->n * ciL );
|
|
|
|
d = T->p;
|
|
n = N->n;
|
|
m = ( B->n < n ) ? B->n : n;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
/*
|
|
* T = (T + u0*B + u1*N) / 2^biL
|
|
*/
|
|
u0 = A->p[i];
|
|
u1 = ( d[0] + u0 * B->p[0] ) * mm;
|
|
|
|
mpi_mul_hlp( m, B->p, d, u0 );
|
|
mpi_mul_hlp( n, N->p, d, u1 );
|
|
|
|
*d++ = u0; d[n + 1] = 0;
|
|
}
|
|
|
|
/* At this point, d is either the desired result or the desired result
|
|
* plus N. We now potentially subtract N, avoiding leaking whether the
|
|
* subtraction is performed through side channels. */
|
|
|
|
/* Copy the n least significant limbs of d to A, so that
|
|
* A = d if d < N (recall that N has n limbs). */
|
|
memcpy( A->p, d, n * ciL );
|
|
/* If d >= N then we want to set A to d - N. To prevent timing attacks,
|
|
* do the calculation without using conditional tests. */
|
|
/* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
|
|
d[n] += 1;
|
|
d[n] -= mpi_sub_hlp( n, d, d, N->p );
|
|
/* If d0 < N then d < (2^biL)^n
|
|
* so d[n] == 0 and we want to keep A as it is.
|
|
* If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
|
|
* so d[n] == 1 and we want to set A to the result of the subtraction
|
|
* which is d - (2^biL)^n, i.e. the n least significant limbs of d.
|
|
* This exactly corresponds to a conditional assignment. */
|
|
mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
|
|
}
|
|
|
|
/*
|
|
* Montgomery reduction: A = A * R^-1 mod N
|
|
*
|
|
* See mpi_montmul() regarding constraints and guarantees on the parameters.
|
|
*/
|
|
static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
|
|
mbedtls_mpi_uint mm, const mbedtls_mpi *T )
|
|
{
|
|
mbedtls_mpi_uint z = 1;
|
|
mbedtls_mpi U;
|
|
|
|
U.n = U.s = (int) z;
|
|
U.p = &z;
|
|
|
|
mpi_montmul( A, &U, N, mm, T );
|
|
}
|
|
|
|
/**
|
|
* Select an MPI from a table without leaking the index.
|
|
*
|
|
* This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
|
|
* reads the entire table in order to avoid leaking the value of idx to an
|
|
* attacker able to observe memory access patterns.
|
|
*
|
|
* \param[out] R Where to write the selected MPI.
|
|
* \param[in] T The table to read from.
|
|
* \param[in] T_size The number of elements in the table.
|
|
* \param[in] idx The index of the element to select;
|
|
* this must satisfy 0 <= idx < T_size.
|
|
*
|
|
* \return \c 0 on success, or a negative error code.
|
|
*/
|
|
static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
|
|
for( size_t i = 0; i < T_size; i++ )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
|
|
(unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
|
|
}
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
|
|
*/
|
|
int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
|
|
const mbedtls_mpi *E, const mbedtls_mpi *N,
|
|
mbedtls_mpi *prec_RR )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t wbits, wsize, one = 1;
|
|
size_t i, j, nblimbs;
|
|
size_t bufsize, nbits;
|
|
mbedtls_mpi_uint ei, mm, state;
|
|
mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
|
|
int neg;
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( E != NULL );
|
|
MPI_VALIDATE_RET( N != NULL );
|
|
|
|
if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
|
|
mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
|
|
return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Init temps and window size
|
|
*/
|
|
mpi_montg_init( &mm, N );
|
|
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
|
|
mbedtls_mpi_init( &Apos );
|
|
mbedtls_mpi_init( &WW );
|
|
memset( W, 0, sizeof( W ) );
|
|
|
|
i = mbedtls_mpi_bitlen( E );
|
|
|
|
wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
|
|
( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
|
|
|
|
#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
|
|
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
|
|
wsize = MBEDTLS_MPI_WINDOW_SIZE;
|
|
#endif
|
|
|
|
j = N->n + 1;
|
|
/* All W[i] and X must have at least N->n limbs for the mpi_montmul()
|
|
* and mpi_montred() calls later. Here we ensure that W[1] and X are
|
|
* large enough, and later we'll grow other W[i] to the same length.
|
|
* They must not be shrunk midway through this function!
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
|
|
|
|
/*
|
|
* Compensate for negative A (and correct at the end)
|
|
*/
|
|
neg = ( A->s == -1 );
|
|
if( neg )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
|
|
Apos.s = 1;
|
|
A = &Apos;
|
|
}
|
|
|
|
/*
|
|
* If 1st call, pre-compute R^2 mod N
|
|
*/
|
|
if( prec_RR == NULL || prec_RR->p == NULL )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
|
|
|
|
if( prec_RR != NULL )
|
|
memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
|
|
}
|
|
else
|
|
memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
|
|
|
|
/*
|
|
* W[1] = A * R^2 * R^-1 mod N = A * R mod N
|
|
*/
|
|
if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
|
|
/* This should be a no-op because W[1] is already that large before
|
|
* mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
|
|
* in mpi_montmul() below, so let's make sure. */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
|
|
}
|
|
else
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
|
|
|
|
/* Note that this is safe because W[1] always has at least N->n limbs
|
|
* (it grew above and was preserved by mbedtls_mpi_copy()). */
|
|
mpi_montmul( &W[1], &RR, N, mm, &T );
|
|
|
|
/*
|
|
* X = R^2 * R^-1 mod N = R mod N
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
|
|
mpi_montred( X, N, mm, &T );
|
|
|
|
if( wsize > 1 )
|
|
{
|
|
/*
|
|
* W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
|
|
*/
|
|
j = one << ( wsize - 1 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
|
|
|
|
for( i = 0; i < wsize - 1; i++ )
|
|
mpi_montmul( &W[j], &W[j], N, mm, &T );
|
|
|
|
/*
|
|
* W[i] = W[i - 1] * W[1]
|
|
*/
|
|
for( i = j + 1; i < ( one << wsize ); i++ )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
|
|
|
|
mpi_montmul( &W[i], &W[1], N, mm, &T );
|
|
}
|
|
}
|
|
|
|
nblimbs = E->n;
|
|
bufsize = 0;
|
|
nbits = 0;
|
|
wbits = 0;
|
|
state = 0;
|
|
|
|
while( 1 )
|
|
{
|
|
if( bufsize == 0 )
|
|
{
|
|
if( nblimbs == 0 )
|
|
break;
|
|
|
|
nblimbs--;
|
|
|
|
bufsize = sizeof( mbedtls_mpi_uint ) << 3;
|
|
}
|
|
|
|
bufsize--;
|
|
|
|
ei = (E->p[nblimbs] >> bufsize) & 1;
|
|
|
|
/*
|
|
* skip leading 0s
|
|
*/
|
|
if( ei == 0 && state == 0 )
|
|
continue;
|
|
|
|
if( ei == 0 && state == 1 )
|
|
{
|
|
/*
|
|
* out of window, square X
|
|
*/
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* add ei to current window
|
|
*/
|
|
state = 2;
|
|
|
|
nbits++;
|
|
wbits |= ( ei << ( wsize - nbits ) );
|
|
|
|
if( nbits == wsize )
|
|
{
|
|
/*
|
|
* X = X^wsize R^-1 mod N
|
|
*/
|
|
for( i = 0; i < wsize; i++ )
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
|
|
/*
|
|
* X = X * W[wbits] R^-1 mod N
|
|
*/
|
|
MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
|
|
mpi_montmul( X, &WW, N, mm, &T );
|
|
|
|
state--;
|
|
nbits = 0;
|
|
wbits = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* process the remaining bits
|
|
*/
|
|
for( i = 0; i < nbits; i++ )
|
|
{
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
|
|
wbits <<= 1;
|
|
|
|
if( ( wbits & ( one << wsize ) ) != 0 )
|
|
mpi_montmul( X, &W[1], N, mm, &T );
|
|
}
|
|
|
|
/*
|
|
* X = A^E * R * R^-1 mod N = A^E mod N
|
|
*/
|
|
mpi_montred( X, N, mm, &T );
|
|
|
|
if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
|
|
{
|
|
X->s = -1;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
|
|
}
|
|
|
|
cleanup:
|
|
|
|
for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
|
|
mbedtls_mpi_free( &W[i] );
|
|
|
|
mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
|
|
mbedtls_mpi_free( &WW );
|
|
|
|
if( prec_RR == NULL || prec_RR->p == NULL )
|
|
mbedtls_mpi_free( &RR );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Greatest common divisor: G = gcd(A, B) (HAC 14.54)
|
|
*/
|
|
int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t lz, lzt;
|
|
mbedtls_mpi TA, TB;
|
|
|
|
MPI_VALIDATE_RET( G != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( B != NULL );
|
|
|
|
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
|
|
|
|
lz = mbedtls_mpi_lsb( &TA );
|
|
lzt = mbedtls_mpi_lsb( &TB );
|
|
|
|
/* The loop below gives the correct result when A==0 but not when B==0.
|
|
* So have a special case for B==0. Leverage the fact that we just
|
|
* calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
|
|
* slightly more efficient than cmp_int(). */
|
|
if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
|
|
{
|
|
ret = mbedtls_mpi_copy( G, A );
|
|
goto cleanup;
|
|
}
|
|
|
|
if( lzt < lz )
|
|
lz = lzt;
|
|
|
|
TA.s = TB.s = 1;
|
|
|
|
/* We mostly follow the procedure described in HAC 14.54, but with some
|
|
* minor differences:
|
|
* - Sequences of multiplications or divisions by 2 are grouped into a
|
|
* single shift operation.
|
|
* - The procedure in HAC assumes that 0 < TB <= TA.
|
|
* - The condition TB <= TA is not actually necessary for correctness.
|
|
* TA and TB have symmetric roles except for the loop termination
|
|
* condition, and the shifts at the beginning of the loop body
|
|
* remove any significance from the ordering of TA vs TB before
|
|
* the shifts.
|
|
* - If TA = 0, the loop goes through 0 iterations and the result is
|
|
* correctly TB.
|
|
* - The case TB = 0 was short-circuited above.
|
|
*
|
|
* For the correctness proof below, decompose the original values of
|
|
* A and B as
|
|
* A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
|
|
* B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
|
|
* Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
|
|
* and gcd(A',B') is odd or 0.
|
|
*
|
|
* At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
|
|
* The code maintains the following invariant:
|
|
* gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
|
|
*/
|
|
|
|
/* Proof that the loop terminates:
|
|
* At each iteration, either the right-shift by 1 is made on a nonzero
|
|
* value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
|
|
* by at least 1, or the right-shift by 1 is made on zero and then
|
|
* TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
|
|
* since in that case TB is calculated from TB-TA with the condition TB>TA).
|
|
*/
|
|
while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
|
|
{
|
|
/* Divisions by 2 preserve the invariant (I). */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
|
|
|
|
/* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
|
|
* TA-TB is even so the division by 2 has an integer result.
|
|
* Invariant (I) is preserved since any odd divisor of both TA and TB
|
|
* also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
|
|
* also divides TB, and any odd divisior of both TB and |TA-TB|/2 also
|
|
* divides TA.
|
|
*/
|
|
if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
|
|
}
|
|
/* Note that one of TA or TB is still odd. */
|
|
}
|
|
|
|
/* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
|
|
* At the loop exit, TA = 0, so gcd(TA,TB) = TB.
|
|
* - If there was at least one loop iteration, then one of TA or TB is odd,
|
|
* and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
|
|
* lz = min(a,b) so gcd(A,B) = 2^lz * TB.
|
|
* - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
|
|
* In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
|
|
*/
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/* Fill X with n_bytes random bytes.
|
|
* X must already have room for those bytes.
|
|
* The ordering of the bytes returned from the RNG is suitable for
|
|
* deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
|
|
* The size and sign of X are unchanged.
|
|
* n_bytes must not be 0.
|
|
*/
|
|
static int mpi_fill_random_internal(
|
|
mbedtls_mpi *X, size_t n_bytes,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
const size_t limbs = CHARS_TO_LIMBS( n_bytes );
|
|
const size_t overhead = ( limbs * ciL ) - n_bytes;
|
|
|
|
if( X->n < limbs )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
memset( X->p, 0, overhead );
|
|
memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
|
|
MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
|
|
mpi_bigendian_to_host( X->p, limbs );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Fill X with size bytes of random.
|
|
*
|
|
* Use a temporary bytes representation to make sure the result is the same
|
|
* regardless of the platform endianness (useful when f_rng is actually
|
|
* deterministic, eg for tests).
|
|
*/
|
|
int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
size_t const limbs = CHARS_TO_LIMBS( size );
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( f_rng != NULL );
|
|
|
|
/* Ensure that target MPI has exactly the necessary number of limbs */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
|
|
if( size == 0 )
|
|
return( 0 );
|
|
|
|
ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
int mbedtls_mpi_random( mbedtls_mpi *X,
|
|
mbedtls_mpi_sint min,
|
|
const mbedtls_mpi *N,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
int count;
|
|
unsigned lt_lower = 1, lt_upper = 0;
|
|
size_t n_bits = mbedtls_mpi_bitlen( N );
|
|
size_t n_bytes = ( n_bits + 7 ) / 8;
|
|
mbedtls_mpi lower_bound;
|
|
|
|
if( min < 0 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* When min == 0, each try has at worst a probability 1/2 of failing
|
|
* (the msb has a probability 1/2 of being 0, and then the result will
|
|
* be < N), so after 30 tries failure probability is a most 2**(-30).
|
|
*
|
|
* When N is just below a power of 2, as is the case when generating
|
|
* a random scalar on most elliptic curves, 1 try is enough with
|
|
* overwhelming probability. When N is just above a power of 2,
|
|
* as when generating a random scalar on secp224k1, each try has
|
|
* a probability of failing that is almost 1/2.
|
|
*
|
|
* The probabilities are almost the same if min is nonzero but negligible
|
|
* compared to N. This is always the case when N is crypto-sized, but
|
|
* it's convenient to support small N for testing purposes. When N
|
|
* is small, use a higher repeat count, otherwise the probability of
|
|
* failure is macroscopic.
|
|
*/
|
|
count = ( n_bytes > 4 ? 30 : 250 );
|
|
|
|
mbedtls_mpi_init( &lower_bound );
|
|
|
|
/* Ensure that target MPI has exactly the same number of limbs
|
|
* as the upper bound, even if the upper bound has leading zeros.
|
|
* This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
|
|
|
|
/*
|
|
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
|
|
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
|
|
* - use the same byte ordering;
|
|
* - keep the leftmost n_bits bits of the generated octet string;
|
|
* - try until result is in the desired range.
|
|
* This also avoids any bias, which is especially important for ECDSA.
|
|
*/
|
|
do
|
|
{
|
|
MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
|
|
|
|
if( --count == 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
goto cleanup;
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, <_lower ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, <_upper ) );
|
|
}
|
|
while( lt_lower != 0 || lt_upper == 0 );
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free( &lower_bound );
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
|
|
*/
|
|
int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( A != NULL );
|
|
MPI_VALIDATE_RET( N != NULL );
|
|
|
|
if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
|
|
mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
|
|
mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
|
|
|
|
if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
goto cleanup;
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
|
|
|
|
do
|
|
{
|
|
while( ( TU.p[0] & 1 ) == 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
|
|
|
|
if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
|
|
}
|
|
|
|
while( ( TV.p[0] & 1 ) == 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
|
|
|
|
if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
|
|
}
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
|
|
}
|
|
else
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
|
|
}
|
|
}
|
|
while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
|
|
|
|
while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
|
|
|
|
while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
|
|
mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
|
|
mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#if defined(MBEDTLS_GENPRIME)
|
|
|
|
static const int small_prime[] =
|
|
{
|
|
3, 5, 7, 11, 13, 17, 19, 23,
|
|
29, 31, 37, 41, 43, 47, 53, 59,
|
|
61, 67, 71, 73, 79, 83, 89, 97,
|
|
101, 103, 107, 109, 113, 127, 131, 137,
|
|
139, 149, 151, 157, 163, 167, 173, 179,
|
|
181, 191, 193, 197, 199, 211, 223, 227,
|
|
229, 233, 239, 241, 251, 257, 263, 269,
|
|
271, 277, 281, 283, 293, 307, 311, 313,
|
|
317, 331, 337, 347, 349, 353, 359, 367,
|
|
373, 379, 383, 389, 397, 401, 409, 419,
|
|
421, 431, 433, 439, 443, 449, 457, 461,
|
|
463, 467, 479, 487, 491, 499, 503, 509,
|
|
521, 523, 541, 547, 557, 563, 569, 571,
|
|
577, 587, 593, 599, 601, 607, 613, 617,
|
|
619, 631, 641, 643, 647, 653, 659, 661,
|
|
673, 677, 683, 691, 701, 709, 719, 727,
|
|
733, 739, 743, 751, 757, 761, 769, 773,
|
|
787, 797, 809, 811, 821, 823, 827, 829,
|
|
839, 853, 857, 859, 863, 877, 881, 883,
|
|
887, 907, 911, 919, 929, 937, 941, 947,
|
|
953, 967, 971, 977, 983, 991, 997, -103
|
|
};
|
|
|
|
/*
|
|
* Small divisors test (X must be positive)
|
|
*
|
|
* Return values:
|
|
* 0: no small factor (possible prime, more tests needed)
|
|
* 1: certain prime
|
|
* MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
|
|
* other negative: error
|
|
*/
|
|
static int mpi_check_small_factors( const mbedtls_mpi *X )
|
|
{
|
|
int ret = 0;
|
|
size_t i;
|
|
mbedtls_mpi_uint r;
|
|
|
|
if( ( X->p[0] & 1 ) == 0 )
|
|
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
|
|
|
|
for( i = 0; small_prime[i] > 0; i++ )
|
|
{
|
|
if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
|
|
return( 1 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
|
|
|
|
if( r == 0 )
|
|
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
|
|
}
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Miller-Rabin pseudo-primality test (HAC 4.24)
|
|
*/
|
|
static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret, count;
|
|
size_t i, j, k, s;
|
|
mbedtls_mpi W, R, T, A, RR;
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( f_rng != NULL );
|
|
|
|
mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
|
|
mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
|
|
mbedtls_mpi_init( &RR );
|
|
|
|
/*
|
|
* W = |X| - 1
|
|
* R = W >> lsb( W )
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
|
|
s = mbedtls_mpi_lsb( &W );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
|
|
|
|
for( i = 0; i < rounds; i++ )
|
|
{
|
|
/*
|
|
* pick a random A, 1 < A < |X| - 1
|
|
*/
|
|
count = 0;
|
|
do {
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
|
|
|
|
j = mbedtls_mpi_bitlen( &A );
|
|
k = mbedtls_mpi_bitlen( &W );
|
|
if (j > k) {
|
|
A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
|
|
}
|
|
|
|
if (count++ > 30) {
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
goto cleanup;
|
|
}
|
|
|
|
} while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
|
|
mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
|
|
|
|
/*
|
|
* A = A^R mod |X|
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
|
|
mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
|
|
continue;
|
|
|
|
j = 1;
|
|
while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
|
|
{
|
|
/*
|
|
* A = A * A mod |X|
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
|
|
|
|
if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
|
|
break;
|
|
|
|
j++;
|
|
}
|
|
|
|
/*
|
|
* not prime if A != |X| - 1 or A == 1
|
|
*/
|
|
if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
|
|
mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
|
|
mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
|
|
mbedtls_mpi_free( &RR );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Pseudo-primality test: small factors, then Miller-Rabin
|
|
*/
|
|
int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
mbedtls_mpi XX;
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( f_rng != NULL );
|
|
|
|
XX.s = 1;
|
|
XX.n = X->n;
|
|
XX.p = X->p;
|
|
|
|
if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
|
|
mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
|
|
return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
|
|
|
|
if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
|
|
return( 0 );
|
|
|
|
if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
|
|
{
|
|
if( ret == 1 )
|
|
return( 0 );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
|
|
}
|
|
|
|
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
|
|
/*
|
|
* Pseudo-primality test, error probability 2^-80
|
|
*/
|
|
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( f_rng != NULL );
|
|
|
|
/*
|
|
* In the past our key generation aimed for an error rate of at most
|
|
* 2^-80. Since this function is deprecated, aim for the same certainty
|
|
* here as well.
|
|
*/
|
|
return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Prime number generation
|
|
*
|
|
* To generate an RSA key in a way recommended by FIPS 186-4, both primes must
|
|
* be either 1024 bits or 1536 bits long, and flags must contain
|
|
* MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
|
|
*/
|
|
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
#ifdef MBEDTLS_HAVE_INT64
|
|
// ceil(2^63.5)
|
|
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
|
|
#else
|
|
// ceil(2^31.5)
|
|
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
|
|
#endif
|
|
int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
size_t k, n;
|
|
int rounds;
|
|
mbedtls_mpi_uint r;
|
|
mbedtls_mpi Y;
|
|
|
|
MPI_VALIDATE_RET( X != NULL );
|
|
MPI_VALIDATE_RET( f_rng != NULL );
|
|
|
|
if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
mbedtls_mpi_init( &Y );
|
|
|
|
n = BITS_TO_LIMBS( nbits );
|
|
|
|
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
|
|
{
|
|
/*
|
|
* 2^-80 error probability, number of rounds chosen per HAC, table 4.4
|
|
*/
|
|
rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
|
|
( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
|
|
( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* 2^-100 error probability, number of rounds computed based on HAC,
|
|
* fact 4.48
|
|
*/
|
|
rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
|
|
( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
|
|
( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
|
|
( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
|
|
}
|
|
|
|
while( 1 )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
|
|
/* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
|
|
if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
|
|
|
|
k = n * biL;
|
|
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
|
|
X->p[0] |= 1;
|
|
|
|
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
|
|
{
|
|
ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
|
|
|
|
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
|
goto cleanup;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* An necessary condition for Y and X = 2Y + 1 to be prime
|
|
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
|
|
* Make sure it is satisfied, while keeping X = 3 mod 4
|
|
*/
|
|
|
|
X->p[0] |= 2;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
|
|
if( r == 0 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
|
|
else if( r == 1 )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
|
|
|
|
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
|
|
|
|
while( 1 )
|
|
{
|
|
/*
|
|
* First, check small factors for X and Y
|
|
* before doing Miller-Rabin on any of them
|
|
*/
|
|
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
|
|
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
|
|
( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
|
|
== 0 &&
|
|
( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
|
|
== 0 )
|
|
goto cleanup;
|
|
|
|
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
|
goto cleanup;
|
|
|
|
/*
|
|
* Next candidates. We want to preserve Y = (X-1) / 2 and
|
|
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
|
|
* so up Y by 6 and X by 12.
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &Y );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* MBEDTLS_GENPRIME */
|
|
|
|
#if defined(MBEDTLS_SELF_TEST)
|
|
|
|
#define GCD_PAIR_COUNT 3
|
|
|
|
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
|
|
{
|
|
{ 693, 609, 21 },
|
|
{ 1764, 868, 28 },
|
|
{ 768454923, 542167814, 1 }
|
|
};
|
|
|
|
/*
|
|
* Checkup routine
|
|
*/
|
|
int mbedtls_mpi_self_test( int verbose )
|
|
{
|
|
int ret, i;
|
|
mbedtls_mpi A, E, N, X, Y, U, V;
|
|
|
|
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
|
|
mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
|
|
"EFE021C2645FD1DC586E69184AF4A31E" \
|
|
"D5F53E93B5F123FA41680867BA110131" \
|
|
"944FE7952E2517337780CB0DB80E61AA" \
|
|
"E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
|
|
"B2E7EFD37075B9F03FF989C7C5051C20" \
|
|
"34D2A323810251127E7BF8625A4F49A5" \
|
|
"F3E27F4DA8BD59C47D6DAABA4C8127BD" \
|
|
"5B5C25763222FEFCCFC38B832366C29E" ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
|
|
"0066A198186C18C10B2F5ED9B522752A" \
|
|
"9830B69916E535C8F047518A889A43A5" \
|
|
"94B6BED27A168D31D4A52F88925AA8F5" ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
|
|
"602AB7ECA597A3D6B56FF9829A5E8B85" \
|
|
"9E857EA95A03512E2BAE7391688D264A" \
|
|
"A5663B0341DB9CCFD2C4C5F421FEC814" \
|
|
"8001B72E848A38CAE1C65F78E56ABDEF" \
|
|
"E12D3C039B8A02D6BE593F0BBBDA56F1" \
|
|
"ECF677152EF804370C1A305CAF3B5BF1" \
|
|
"30879B56C61DE584A0F53A2447A51E" ) );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " MPI test #1 (mul_mpi): " );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
|
|
"256567336059E52CAE22925474705F39A94" ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
|
|
"6613F26162223DF488E9CD48CC132C7A" \
|
|
"0AC93C701B001B092E4E5B9F73BCD27B" \
|
|
"9EE50D0657C77F374E903CDFA4C642" ) );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " MPI test #2 (div_mpi): " );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
|
|
mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
|
|
"36E139AEA55215609D2816998ED020BB" \
|
|
"BD96C37890F65171D948E9BC7CBAA4D9" \
|
|
"325D24D6A3C12710F10A09FA08AB87" ) );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " MPI test #3 (exp_mod): " );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
|
|
"003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
|
|
"C3DBA76456363A10869622EAC2DD84EC" \
|
|
"C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " MPI test #4 (inv_mod): " );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " MPI test #5 (simple gcd): " );
|
|
|
|
for( i = 0; i < GCD_PAIR_COUNT; i++ )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
|
|
|
|
if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed at %d\n", i );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
cleanup:
|
|
|
|
if( ret != 0 && verbose != 0 )
|
|
mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
|
|
|
|
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
|
|
mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "\n" );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* MBEDTLS_SELF_TEST */
|
|
|
|
#endif /* MBEDTLS_BIGNUM_C */
|