mbedtls/include/mbedtls/ecp_internal.h
Ron Eldor 8b0cf2e76f Include configuration file to headers
Add inclusion to configration file in header files,
instead of relying on other header files to include
the configuration file. This issue resolves #1371
2018-12-16 12:02:50 +02:00

300 lines
10 KiB
C

/**
* \file ecp_internal.h
*
* \brief Function declarations for alternative implementation of elliptic curve
* point arithmetic.
*/
/*
* Copyright (C) 2016, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* References:
*
* [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
* <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
*
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
*
* [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
* render ECC resistant against Side Channel Attacks. IACR Cryptology
* ePrint Archive, 2004, vol. 2004, p. 342.
* <http://eprint.iacr.org/2004/342.pdf>
*
* [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
* <http://www.secg.org/sec2-v2.pdf>
*
* [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
* Curve Cryptography.
*
* [6] Digital Signature Standard (DSS), FIPS 186-4.
* <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
*
* [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
* Security (TLS), RFC 4492.
* <https://tools.ietf.org/search/rfc4492>
*
* [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
*
* [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
* Springer Science & Business Media, 1 Aug 2000
*/
#ifndef MBEDTLS_ECP_INTERNAL_H
#define MBEDTLS_ECP_INTERNAL_H
#if !defined(MBEDTLS_CONFIG_FILE)
#include "config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
/**
* \brief Indicate if the Elliptic Curve Point module extension can
* handle the group.
*
* \param grp The pointer to the elliptic curve group that will be the
* basis of the cryptographic computations.
*
* \return Non-zero if successful.
*/
unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
/**
* \brief Initialise the Elliptic Curve Point module extension.
*
* If mbedtls_internal_ecp_grp_capable returns true for a
* group, this function has to be able to initialise the
* module for it.
*
* This module can be a driver to a crypto hardware
* accelerator, for which this could be an initialise function.
*
* \param grp The pointer to the group the module needs to be
* initialised for.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
/**
* \brief Frees and deallocates the Elliptic Curve Point module
* extension.
*
* \param grp The pointer to the group the module was initialised for.
*/
void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
#if defined(ECP_SHORTWEIERSTRASS)
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
/**
* \brief Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
*
* \param grp Pointer to the group representing the curve.
*
* \param pt The point on the curve to be randomised, given with Jacobian
* coordinates.
*
* \param f_rng A function pointer to the random number generator.
*
* \param p_rng A pointer to the random number generator state.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
#endif
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
/**
* \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
*
* The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized.
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Special cases: (1) P or Q is zero, (2) R is zero,
* (3) P == Q.
* None of these cases can happen as intermediate step in
* ecp_mul_comb():
* - at each step, P, Q and R are multiples of the base
* point, the factor being less than its order, so none of
* them is zero;
* - Q is an odd multiple of the base point, P an even
* multiple, due to the choice of precomputed points in the
* modified comb method.
* So branches for these cases do not leak secret information.
*
* We accept Q->Z being unset (saving memory in tables) as
* meaning 1.
*
* Cost in field operations if done by [5] 3.22:
* 1A := 8M + 3S
*
* \param grp Pointer to the group representing the curve.
*
* \param R Pointer to a point structure to hold the result.
*
* \param P Pointer to the first summand, given with Jacobian
* coordinates
*
* \param Q Pointer to the second summand, given with affine
* coordinates.
*
* \return 0 if successful.
*/
int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
const mbedtls_ecp_point *Q );
#endif
/**
* \brief Point doubling R = 2 P, Jacobian coordinates.
*
* Cost: 1D := 3M + 4S (A == 0)
* 4M + 4S (A == -3)
* 3M + 6S + 1a otherwise
* when the implementation is based on the "dbl-1998-cmo-2"
* doubling formulas in [8] and standard optimizations are
* applied when curve parameter A is one of { 0, -3 }.
*
* \param grp Pointer to the group representing the curve.
*
* \param R Pointer to a point structure to hold the result.
*
* \param P Pointer to the point that has to be doubled, given with
* Jacobian coordinates.
*
* \return 0 if successful.
*/
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
#endif
/**
* \brief Normalize jacobian coordinates of an array of (pointers to)
* points.
*
* Using Montgomery's trick to perform only one inversion mod P
* the cost is:
* 1N(t) := 1I + (6t - 3)M + 1S
* (See for example Algorithm 10.3.4. in [9])
*
* This function is used only as a subrutine of
* ecp_mul_comb().
*
* Warning: fails (returning an error) if one of the points is
* zero!
* This should never happen, see choice of w in ecp_mul_comb().
*
* \param grp Pointer to the group representing the curve.
*
* \param T Array of pointers to the points to normalise.
*
* \param t_len Number of elements in the array.
*
* \return 0 if successful,
* an error if one of the points is zero.
*/
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *T[], size_t t_len );
#endif
/**
* \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
*
* Cost in field operations if done by [5] 3.2.1:
* 1N := 1I + 3M + 1S
*
* \param grp Pointer to the group representing the curve.
*
* \param pt pointer to the point to be normalised. This is an
* input/output parameter.
*
* \return 0 if successful.
*/
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt );
#endif
#endif /* ECP_SHORTWEIERSTRASS */
#if defined(ECP_MONTGOMERY)
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
#endif
/**
* \brief Randomize projective x/z coordinates:
* (X, Z) -> (l X, l Z) for random l
*
* \param grp pointer to the group representing the curve
*
* \param P the point on the curve to be randomised given with
* projective coordinates. This is an input/output parameter.
*
* \param f_rng a function pointer to the random number generator
*
* \param p_rng a pointer to the random number generator state
*
* \return 0 if successful
*/
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
#endif
/**
* \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
*
* \param grp pointer to the group representing the curve
*
* \param P pointer to the point to be normalised. This is an
* input/output parameter.
*
* \return 0 if successful
*/
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *P );
#endif
#endif /* ECP_MONTGOMERY */
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
#endif /* ecp_internal.h */