mbedtls/tinycrypt/ecc_dsa.c
Andrzej Kurek e601bcee00
Add flow control to tinycrypt verification
Signed-off-by: Andrzej Kurek <andrzej.kurek@arm.com>
2020-06-01 07:31:15 -04:00

307 lines
9.6 KiB
C

/* ec_dsa.c - TinyCrypt implementation of EC-DSA */
/*
* Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dsa.h>
#include "mbedtls/platform_util.h"
static void bits2int(uECC_word_t *native, const uint8_t *bits,
unsigned bits_size)
{
unsigned num_n_bytes = BITS_TO_BYTES(NUM_ECC_BITS);
if (bits_size > num_n_bytes) {
bits_size = num_n_bytes;
}
uECC_vli_clear(native);
uECC_vli_bytesToNative(native, bits, bits_size);
}
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uECC_word_t *k, uint8_t *signature)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t s[NUM_ECC_WORDS];
uECC_word_t p[NUM_ECC_WORDS * 2];
wordcount_t num_n_words = BITS_TO_WORDS(NUM_ECC_BITS);
int r;
/* Make sure 0 < k < curve_n */
if (uECC_vli_isZero(k) ||
uECC_vli_cmp(curve_n, k) != 1) {
return UECC_FAILURE;
}
r = EccPoint_mult_safer(p, curve_G, k);
if (r != UECC_SUCCESS) {
return r;
}
/* If an RNG function was specified, get a random number
to prevent side channel analysis of k. */
if (!uECC_get_rng()) {
uECC_vli_clear(tmp);
tmp[0] = 1;
}
else if (!uECC_generate_random_int(tmp, curve_n, num_n_words)) {
return UECC_FAILURE;
}
/* Prevent side channel analysis of uECC_vli_modInv() to determine
bits of k / the private key by premultiplying by a random number */
uECC_vli_modMult(k, k, tmp, curve_n); /* k' = rand * k */
uECC_vli_modInv(k, k, curve_n); /* k = 1 / k' */
uECC_vli_modMult(k, k, tmp, curve_n); /* k = 1 / k */
uECC_vli_nativeToBytes(signature, NUM_ECC_BYTES, p); /* store r */
/* tmp = d: */
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(NUM_ECC_BITS));
s[num_n_words - 1] = 0;
uECC_vli_set(s, p);
uECC_vli_modMult(s, tmp, s, curve_n); /* s = r*d */
bits2int(tmp, message_hash, hash_size);
uECC_vli_modAdd(s, tmp, s, curve_n); /* s = e + r*d */
uECC_vli_modMult(s, s, k, curve_n); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s) > (bitcount_t)NUM_ECC_BYTES * 8) {
return UECC_FAILURE;
}
uECC_vli_nativeToBytes(signature + NUM_ECC_BYTES, NUM_ECC_BYTES, s);
return UECC_SUCCESS;
}
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uint8_t *signature)
{
int r;
uECC_word_t _random[2*NUM_ECC_WORDS];
uECC_word_t k[NUM_ECC_WORDS];
uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _random uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function ||
!rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) {
return UECC_FAILURE;
}
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
uECC_vli_mmod(k, _random, curve_n);
r = uECC_sign_with_k(private_key, message_hash, hash_size, k, signature);
/* don't keep trying if a fault was detected */
if (r == UECC_FAULT_DETECTED) {
return r;
}
if (r == UECC_SUCCESS) {
return UECC_SUCCESS;
}
/* else keep trying */
}
return UECC_FAILURE;
}
static bitcount_t smax(bitcount_t a, bitcount_t b)
{
return (a > b ? a : b);
}
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
unsigned hash_size, const uint8_t *signature)
{
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS];
uECC_word_t sum[NUM_ECC_WORDS * 2];
uECC_word_t rx[NUM_ECC_WORDS];
uECC_word_t ry[NUM_ECC_WORDS];
uECC_word_t tx[NUM_ECC_WORDS];
uECC_word_t ty[NUM_ECC_WORDS];
uECC_word_t tz[NUM_ECC_WORDS];
const uECC_word_t *points[4];
const uECC_word_t *point;
bitcount_t num_bits;
bitcount_t i;
bitcount_t flow_control;
volatile uECC_word_t diff;
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
wordcount_t num_words = NUM_ECC_WORDS;
wordcount_t num_n_words = BITS_TO_WORDS(NUM_ECC_BITS);
rx[num_n_words - 1] = 0;
r[num_n_words - 1] = 0;
s[num_n_words - 1] = 0;
flow_control = 1;
uECC_vli_bytesToNative(_public, public_key, NUM_ECC_BYTES);
uECC_vli_bytesToNative(_public + num_words, public_key + NUM_ECC_BYTES,
NUM_ECC_BYTES);
uECC_vli_bytesToNative(r, signature, NUM_ECC_BYTES);
uECC_vli_bytesToNative(s, signature + NUM_ECC_BYTES, NUM_ECC_BYTES);
/* r, s must not be 0. */
if (uECC_vli_isZero(r) || uECC_vli_isZero(s)) {
return UECC_FAILURE;
}
/* r, s must be < n. */
if (uECC_vli_cmp_unsafe(curve_n, r) != 1 ||
uECC_vli_cmp_unsafe(curve_n, s) != 1) {
return UECC_FAILURE;
}
flow_control++;
/* Calculate u1 and u2. */
uECC_vli_modInv(z, s, curve_n); /* z = 1/s */
u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size);
uECC_vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */
uECC_vli_modMult(u2, r, z, curve_n); /* u2 = r/s */
/* Calculate sum = G + Q. */
uECC_vli_set(sum, _public);
uECC_vli_set(sum + num_words, _public + num_words);
uECC_vli_set(tx, curve_G);
uECC_vli_set(ty, curve_G + num_words);
uECC_vli_modSub(z, sum, tx, curve_p); /* z = x2 - x1 */
XYcZ_add(tx, ty, sum, sum + num_words);
uECC_vli_modInv(z, z, curve_p); /* z = 1/z */
apply_z(sum, sum + num_words, z);
flow_control++;
/* Use Shamir's trick to calculate u1*G + u2*Q */
points[0] = 0;
points[1] = curve_G;
points[2] = _public;
points[3] = sum;
num_bits = smax(uECC_vli_numBits(u1),
uECC_vli_numBits(u2));
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
uECC_vli_set(rx, point);
uECC_vli_set(ry, point + num_words);
uECC_vli_clear(z);
z[0] = 1;
flow_control++;
for (i = num_bits - 2; i >= 0; --i) {
uECC_word_t index;
double_jacobian_default(rx, ry, z);
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
point = points[index];
if (point) {
uECC_vli_set(tx, point);
uECC_vli_set(ty, point + num_words);
apply_z(tx, ty, z);
uECC_vli_modSub(tz, rx, tx, curve_p); /* Z = x2 - x1 */
XYcZ_add(tx, ty, rx, ry);
uECC_vli_modMult_fast(z, z, tz);
}
flow_control++;
}
uECC_vli_modInv(z, z, curve_p); /* Z = 1/Z */
apply_z(rx, ry, z);
flow_control++;
/* v = x1 (mod n) */
if (uECC_vli_cmp_unsafe(curve_n, rx) != 1) {
uECC_vli_sub(rx, rx, curve_n);
}
/* Accept only if v == r. */
diff = uECC_vli_equal(rx, r);
if (diff == 0) {
flow_control++;
mbedtls_platform_random_delay();
/* Re-check the condition and test if the control flow is as expected.
* 1 (base value) + num_bits - 1 (from the loop) + 5 incrementations.
*/
if (diff == 0 && flow_control == (num_bits + 5)) {
return UECC_SUCCESS;
}
else {
return UECC_FAULT_DETECTED;
}
}
return UECC_FAILURE;
}