mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-12-25 02:15:35 +00:00
10d8e8ed64
This is a first step in protecting against fault injection attacks: the attacker can no longer change failure into success by flipping a single bit. Additional steps are needed to prevent other attacks (instruction skip etc) and will be the object of future commits. The return value of uECC_vli_equal() should be protected as well, which will be done in a future commit as well.
117 lines
3.9 KiB
Plaintext
117 lines
3.9 KiB
Plaintext
/* BEGIN_HEADER */
|
|
|
|
#include "tinycrypt/ecc.h"
|
|
#include "tinycrypt/ecc_dh.h"
|
|
#include "tinycrypt/ecc_dsa.h"
|
|
|
|
/* END_HEADER */
|
|
|
|
/* BEGIN_DEPENDENCIES
|
|
* depends_on:MBEDTLS_USE_TINYCRYPT
|
|
* END_DEPENDENCIES
|
|
*/
|
|
|
|
/* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */
|
|
void test_ecdh()
|
|
{
|
|
uint8_t private1[NUM_ECC_BYTES] = {0};
|
|
uint8_t private2[NUM_ECC_BYTES] = {0};
|
|
uint8_t public1[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t public2[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t secret1[NUM_ECC_BYTES] = {0};
|
|
uint8_t secret2[NUM_ECC_BYTES] = {0};
|
|
|
|
const struct uECC_Curve_t * curve = uECC_secp256r1();
|
|
|
|
uECC_set_rng( &uecc_rng_wrapper );
|
|
|
|
TEST_ASSERT( uECC_make_key( public1, private1, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_make_key( public2, private2, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_shared_secret( public2, private1, secret1, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_shared_secret( public1, private2, secret2, curve ) != 0 );
|
|
|
|
TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 );
|
|
}
|
|
/* END_CASE */
|
|
|
|
/* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */
|
|
void test_ecdsa()
|
|
{
|
|
uint8_t private[NUM_ECC_BYTES] = {0};
|
|
uint8_t public[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t hash[NUM_ECC_BYTES] = {0};
|
|
uint8_t sig[2*NUM_ECC_BYTES] = {0};
|
|
|
|
const struct uECC_Curve_t * curve = uECC_secp256r1();
|
|
|
|
uECC_set_rng( &uecc_rng_wrapper );
|
|
|
|
TEST_ASSERT( rnd_std_rand( NULL, hash, NUM_ECC_BYTES ) == 0 );
|
|
|
|
TEST_ASSERT( uECC_make_key( public, private, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_sign( private, hash, sizeof( hash ), sig, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_verify( public, hash, sizeof( hash ), sig, curve ) == UECC_SUCCESS );
|
|
}
|
|
/* END_CASE */
|
|
|
|
/* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */
|
|
void ecdh_primitive_testvec( data_t * private1, data_t * xA_str,
|
|
data_t * yA_str, data_t * private2,
|
|
data_t * xB_str, data_t * yB_str, data_t * z_str )
|
|
{
|
|
const struct uECC_Curve_t * curve = uECC_secp256r1();
|
|
uint8_t public1[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t public2[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t secret1[NUM_ECC_BYTES] = {0};
|
|
uint8_t secret2[NUM_ECC_BYTES] = {0};
|
|
|
|
memcpy( public1, xA_str->x, xA_str->len );
|
|
memcpy( public1 + NUM_ECC_BYTES, yA_str->x, yA_str->len );
|
|
memcpy( public2, xB_str->x, xB_str->len );
|
|
memcpy( public2 + NUM_ECC_BYTES, yB_str->x, yB_str->len );
|
|
|
|
// Compute shared secrets and compare to test vector secret
|
|
TEST_ASSERT( uECC_shared_secret( public2, private1->x, secret1, curve ) != 0 );
|
|
|
|
TEST_ASSERT( uECC_shared_secret( public1, private2->x, secret2, curve ) != 0 );
|
|
|
|
TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 );
|
|
TEST_ASSERT( memcmp( secret1, z_str->x, sizeof( secret1 ) ) == 0 );
|
|
TEST_ASSERT( memcmp( secret2, z_str->x, sizeof( secret2 ) ) == 0 );
|
|
}
|
|
/* END_CASE */
|
|
|
|
/* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */
|
|
void ecdsa_primitive_testvec( data_t * xQ_str, data_t * yQ_str,
|
|
data_t * hash, data_t * r_str, data_t * s_str )
|
|
{
|
|
const struct uECC_Curve_t * curve = uECC_secp256r1();
|
|
uint8_t pub_bytes[2*NUM_ECC_BYTES] = {0};
|
|
uint8_t sig_bytes[2*NUM_ECC_BYTES] = {0};
|
|
|
|
memcpy( pub_bytes, xQ_str->x, xQ_str->len );
|
|
memcpy( pub_bytes + NUM_ECC_BYTES, yQ_str->x, yQ_str->len );
|
|
memcpy( sig_bytes, r_str->x, r_str->len );
|
|
memcpy( sig_bytes + NUM_ECC_BYTES, s_str->x, r_str->len );
|
|
|
|
TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len,
|
|
sig_bytes, curve ) == UECC_SUCCESS );
|
|
|
|
// Alter the signature and check the verification fails
|
|
for( int i = 0; i < 2*NUM_ECC_BYTES; i++ )
|
|
{
|
|
uint8_t temp = sig_bytes[i];
|
|
sig_bytes[i] = ( sig_bytes[i] + 1 ) % 256;
|
|
TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len,
|
|
sig_bytes, curve ) == UECC_FAILURE );
|
|
sig_bytes[i] = temp;
|
|
}
|
|
|
|
}
|
|
/* END_CASE */
|