Go to file
2018-10-31 21:23:27 -03:00
externals aloha 2018-08-23 04:59:57 -03:00
include/sirit Add Op* prefix to instructions that have to be emited 2018-10-31 21:23:27 -03:00
src Add Op* prefix to instructions that have to be emited 2018-10-31 21:23:27 -03:00
tests Add Op* prefix to instructions that have to be emited 2018-10-31 21:23:27 -03:00
.clang-format Use some C++17 features 2018-10-03 00:32:45 -03:00
.gitignore aloha 2018-08-23 04:59:57 -03:00
.gitmodules aloha 2018-08-23 04:59:57 -03:00
CMakeLists.txt Implement stuff 2018-08-25 20:16:37 -03:00
LICENSE.txt Fixup License 2018-08-26 22:27:33 -03:00
README.md Remove optimization entry 2018-10-27 04:30:20 -03:00

Sirit

A runtime SPIR-V assembler. It aims to ease dynamic SPIR-V code generation without calling external applications (like Khronos' spirv-as)

Its design aims to move code that does not belong to the application in the library without, limitting its functionality.

What it does for you:

  • Sort declaration opcodes
  • Handle types and constant duplicates
  • Emit SPIR-V opcodes
  • Add capabilities automatically

What does not do for you:

  • Avoid ID duplicates (emitting the same instruction twice)
  • Dump code to disk
  • Handle code blocks/branches
  • Compile from a higher level language

It's in early stages of development, many instructions are missing since they are written manually instead of being generated from a file.

Example

class MyModule : public Sirit::Module {
public:
    MyModule() {}
    ~MyModule() = default;

    void Generate() {
        AddCapability(spv::Capability::Shader);
        SetMemoryModel(spv::AddressingModel::Logical, spv::MemoryModel::GLSL450);
        
        auto main_type{TypeFunction(TypeVoid())};
        auto main_func{Emit(Function(TypeVoid(), spv::FunctionControlMask::MaskNone, main_type))};
        Emit(Label());
        Emit(Return());
        Emit(FunctionEnd());

        AddEntryPoint(spv::ExecutionModel::Vertex, main_func, "main");
    }
};

// Then...

MyModule module;
module.Generate();

module.Optimize(2);
std::vector<std::uint8_t> code{module.Assemble()};