Go to file
ReinUsesLisp f254b6a394 tests/main: Test assembled binary
Previously the test couldn't fail unless it crashed. Now that sirit does
not do work "behind the scenes" that can change between versions (like
declaring capabilities), we can have this checking.
2019-10-24 03:20:05 -03:00
externals aloha 2018-08-23 04:59:57 -03:00
include/sirit Remove Emit entry in favor of auto-emitting code 2019-10-18 04:27:52 -03:00
src instructions/logical: Silence -Wpedantic 2019-10-24 03:08:42 -03:00
tests tests/main: Test assembled binary 2019-10-24 03:20:05 -03:00
.clang-format Change clang-format settings 2019-03-11 03:26:21 -03:00
.gitignore aloha 2018-08-23 04:59:57 -03:00
.gitmodules aloha 2018-08-23 04:59:57 -03:00
CMakeLists.txt Avoid CMake SPIR-V module dependencies 2018-11-16 03:59:28 -03:00
LICENSE.txt Relicense to The BSD 3-clause license 2019-07-14 18:50:44 -03:00
README.md Update README.md 2019-10-24 03:02:34 -03:00

Sirit

A runtime SPIR-V assembler. It aims to ease dynamic SPIR-V code generation without calling external applications (like Khronos' spirv-as)

Its design aims to move code that does not belong to the application in the library without, limitting its functionality.

What it does for you:

  • Sort declaration opcodes
  • Handle types and constant duplicates
  • Emit SPIR-V opcodes

What does not do for you:

  • Avoid ID duplicates (emitting the same instruction twice)
  • Dump code to disk
  • Handle code blocks/branches
  • Compile from a higher level language

It's in early stages of development, many instructions are missing since they are written manually instead of being generated from a file.

Example

class MyModule : public Sirit::Module {
public:
    MyModule() {}
    ~MyModule() = default;

    void Generate() {
        AddCapability(spv::Capability::Shader);
        SetMemoryModel(spv::AddressingModel::Logical, spv::MemoryModel::GLSL450);
        
        auto main_type{TypeFunction(TypeVoid())};
        auto main_func{OpFunction(TypeVoid(), spv::FunctionControlMask::MaskNone, main_type)};
        AddLabel(OpLabel());
        OpReturn();
        OpFunctionEnd();

        AddEntryPoint(spv::ExecutionModel::Vertex, main_func, "main");
    }
};

// Then...

MyModule module;
module.Generate();

std::vector<std::uint32_t> code{module.Assemble()};