unicorn/qemu/target/arm/helper-a64.c

848 lines
26 KiB
C
Raw Normal View History

2015-08-21 07:04:50 +00:00
/*
* AArch64 specific helpers
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
2015-08-21 07:04:50 +00:00
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "qemu/log.h"
2015-08-21 07:04:50 +00:00
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "internals.h"
#include "qemu/crc32c.h"
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qemu/int128.h"
#include "tcg.h"
#include "fpu/softfloat.h"
2015-08-21 07:04:50 +00:00
/* C2.4.7 Multiply and divide */
/* special cases for 0 and LLONG_MIN are mandated by the standard */
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
{
if (den == 0) {
return 0;
}
return num / den;
}
int64_t HELPER(sdiv64)(int64_t num, int64_t den)
{
if (den == 0) {
return 0;
}
if (num == LLONG_MIN && den == -1) {
return LLONG_MIN;
}
return num / den;
}
uint64_t HELPER(rbit64)(uint64_t x)
{
return revbit64(x);
2015-08-21 07:04:50 +00:00
}
/* Convert a softfloat float_relation_ (as returned by
* the float*_compare functions) to the correct ARM
* NZCV flag state.
*/
static inline uint32_t float_rel_to_flags(int res)
{
uint64_t flags;
switch (res) {
case float_relation_equal:
flags = PSTATE_Z | PSTATE_C;
break;
case float_relation_less:
flags = PSTATE_N;
break;
case float_relation_greater:
flags = PSTATE_C;
break;
case float_relation_unordered:
default:
flags = PSTATE_C | PSTATE_V;
break;
}
return flags;
}
uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare(x, y, fp_status));
}
float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float32_is_zero(a) && float32_is_infinity(b)) ||
(float32_is_infinity(a) && float32_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float32((1U << 30) |
((float32_val(a) ^ float32_val(b)) & (1U << 31)));
}
return float32_mul(a, b, fpst);
}
float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float64_is_zero(a) && float64_is_infinity(b)) ||
(float64_is_infinity(a) && float64_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float64((1ULL << 62) |
((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
}
return float64_mul(a, b, fpst);
}
uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
uint32_t rn, uint32_t numregs)
{
/* Helper function for SIMD TBL and TBX. We have to do the table
* lookup part for the 64 bits worth of indices we're passed in.
* result is the initial results vector (either zeroes for TBL
* or some guest values for TBX), rn the register number where
* the table starts, and numregs the number of registers in the table.
* We return the results of the lookups.
*/
int shift;
for (shift = 0; shift < 64; shift += 8) {
int index = extract64(indices, shift, 8);
if (index < 16 * numregs) {
/* Convert index (a byte offset into the virtual table
* which is a series of 128-bit vectors concatenated)
* into the correct register element plus a bit offset
2015-08-21 07:04:50 +00:00
* into that element, bearing in mind that the table
* can wrap around from V31 to V0.
*/
int elt = (rn * 2 + (index >> 3)) % 64;
int bitidx = (index & 7) * 8;
uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
uint64_t val = extract64(q[elt & 1], bitidx, 8);
2015-08-21 07:04:50 +00:00
result = deposit64(result, shift, 8, val);
}
}
return result;
}
/* 64bit/double versions of the neon float compare functions */
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_eq_quiet(a, b, fpst);
}
uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_le(b, a, fpst);
}
uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_lt(b, a, fpst);
}
/* Reciprocal step and sqrt step. Note that unlike the A32/T32
* versions, these do a fully fused multiply-add or
* multiply-add-and-halve.
*/
#define float16_two make_float16(0x4000)
#define float16_three make_float16(0x4200)
#define float16_one_point_five make_float16(0x3e00)
2015-08-21 07:04:50 +00:00
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
#define float64_two make_float64(0x4000000000000000ULL)
#define float64_three make_float64(0x4008000000000000ULL)
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
float16 HELPER(recpsf_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float16_squash_input_denormal(a, fpst);
b = float16_squash_input_denormal(b, fpst);
a = float16_chs(a);
if ((float16_is_infinity(a) && float16_is_zero(b)) ||
(float16_is_infinity(b) && float16_is_zero(a))) {
return float16_two;
}
return float16_muladd(a, b, float16_two, 0, fpst);
}
2015-08-21 07:04:50 +00:00
float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_squash_input_denormal(a, fpst);
b = float32_squash_input_denormal(b, fpst);
2015-08-21 07:04:50 +00:00
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_two;
}
return float32_muladd(a, b, float32_two, 0, fpst);
}
float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_squash_input_denormal(a, fpst);
b = float64_squash_input_denormal(b, fpst);
2015-08-21 07:04:50 +00:00
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_two;
}
return float64_muladd(a, b, float64_two, 0, fpst);
}
float16 HELPER(rsqrtsf_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float16_squash_input_denormal(a, fpst);
b = float16_squash_input_denormal(b, fpst);
a = float16_chs(a);
if ((float16_is_infinity(a) && float16_is_zero(b)) ||
(float16_is_infinity(b) && float16_is_zero(a))) {
return float16_one_point_five;
}
return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
}
2015-08-21 07:04:50 +00:00
float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_squash_input_denormal(a, fpst);
b = float32_squash_input_denormal(b, fpst);
2015-08-21 07:04:50 +00:00
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_one_point_five;
}
return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
}
float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_squash_input_denormal(a, fpst);
b = float64_squash_input_denormal(b, fpst);
2015-08-21 07:04:50 +00:00
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_one_point_five;
}
return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
}
/* Pairwise long add: add pairs of adjacent elements into
* double-width elements in the result (eg _s8 is an 8x8->16 op)
*/
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
{
uint64_t nsignmask = 0x0080008000800080ULL;
uint64_t wsignmask = 0x8000800080008000ULL;
uint64_t elementmask = 0x00ff00ff00ff00ffULL;
uint64_t tmp1, tmp2;
uint64_t res, signres;
/* Extract odd elements, sign extend each to a 16 bit field */
tmp1 = a & elementmask;
tmp1 ^= nsignmask;
tmp1 |= wsignmask;
tmp1 = (tmp1 - nsignmask) ^ wsignmask;
/* Ditto for the even elements */
tmp2 = (a >> 8) & elementmask;
tmp2 ^= nsignmask;
tmp2 |= wsignmask;
tmp2 = (tmp2 - nsignmask) ^ wsignmask;
/* calculate the result by summing bits 0..14, 16..22, etc,
* and then adjusting the sign bits 15, 23, etc manually.
* This ensures the addition can't overflow the 16 bit field.
*/
signres = (tmp1 ^ tmp2) & wsignmask;
res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
res ^= signres;
return res;
}
uint64_t HELPER(neon_addlp_u8)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x00ff00ff00ff00ffULL;
tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
return tmp;
}
uint64_t HELPER(neon_addlp_s16)(uint64_t a)
{
int32_t reslo, reshi;
reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
return (uint32_t)reslo | (((uint64_t)reshi) << 32);
}
uint64_t HELPER(neon_addlp_u16)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x0000ffff0000ffffULL;
tmp += (a >> 16) & 0x0000ffff0000ffffULL;
return tmp;
}
/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
{
float_status *fpst = fpstp;
uint32_t val32, sbit;
int32_t exp;
if (float32_is_any_nan(a)) {
float32 nan = a;
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
if (float32_is_signaling_nan(a, fpst)) {
2015-08-21 07:04:50 +00:00
float_raise(float_flag_invalid, fpst);
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
nan = float32_maybe_silence_nan(a, fpst);
2015-08-21 07:04:50 +00:00
}
if (fpst->default_nan_mode) {
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
nan = float32_default_nan(fpst);
2015-08-21 07:04:50 +00:00
}
return nan;
}
val32 = float32_val(a);
sbit = 0x80000000ULL & val32;
exp = extract32(val32, 23, 8);
if (exp == 0) {
return make_float32(sbit | (0xfe << 23));
} else {
return make_float32(sbit | (~exp & 0xff) << 23);
}
}
float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
{
float_status *fpst = fpstp;
uint64_t val64, sbit;
int64_t exp;
if (float64_is_any_nan(a)) {
float64 nan = a;
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
if (float64_is_signaling_nan(a, fpst)) {
2015-08-21 07:04:50 +00:00
float_raise(float_flag_invalid, fpst);
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
nan = float64_maybe_silence_nan(a, fpst);
2015-08-21 07:04:50 +00:00
}
if (fpst->default_nan_mode) {
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
nan = float64_default_nan(fpst);
2015-08-21 07:04:50 +00:00
}
return nan;
}
val64 = float64_val(a);
sbit = 0x8000000000000000ULL & val64;
exp = extract64(float64_val(a), 52, 11);
if (exp == 0) {
return make_float64(sbit | (0x7feULL << 52));
} else {
return make_float64(sbit | (~exp & 0x7ffULL) << 52);
}
}
float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
{
/* Von Neumann rounding is implemented by using round-to-zero
* and then setting the LSB of the result if Inexact was raised.
*/
float32 r;
float_status *fpst = &env->vfp.fp_status;
float_status tstat = *fpst;
int exflags;
set_float_rounding_mode(float_round_to_zero, &tstat);
set_float_exception_flags(0, &tstat);
r = float64_to_float32(a, &tstat);
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
r = float32_maybe_silence_nan(r, fpst);
2015-08-21 07:04:50 +00:00
exflags = get_float_exception_flags(&tstat);
if (exflags & float_flag_inexact) {
r = make_float32(float32_val(r) | 1);
}
exflags |= get_float_exception_flags(fpst);
set_float_exception_flags(exflags, fpst);
return r;
}
/* 64-bit versions of the CRC helpers. Note that although the operation
* (and the prototypes of crc32c() and crc32() mean that only the bottom
* 32 bits of the accumulator and result are used, we pass and return
* uint64_t for convenience of the generated code. Unlike the 32-bit
* instruction set versions, val may genuinely have 64 bits of data in it.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
2018-01-29 14:23:46 +00:00
static const uint32_t iso_table[256] = {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
const uint8_t* data = buf;
uint32_t crc = (uint32_t)acc;
while (bytes-- > 0) {
crc = (crc >> 8) ^ iso_table[(crc ^ (*data++)) & 0xFF];
}
return crc;
2015-08-21 07:04:50 +00:00
/* zlib crc32 converts the accumulator and output to one's complement. */
// return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}
uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
/* Linux crc32c converts the output to one's complement. */
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
/* Returns 0 on success; 1 otherwise. */
uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
uint64_t new_lo, uint64_t new_hi)
{
uintptr_t ra = GETPC();
Int128 oldv, cmpv, newv;
bool success;
/* high and low need to be switched here because this is not actually a
* 128bit store but two doublewords stored consecutively
*/
cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
newv = int128_make128(new_hi, new_lo);
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
if (env->uc->parallel_cpus) {
#ifndef CONFIG_ATOMIC128
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
success = int128_eq(oldv, cmpv);
#endif
} else {
uint64_t o0, o1;
#ifdef CONFIG_USER_ONLY
/* ??? Enforce alignment. */
uint64_t *haddr = g2h(addr);
env->uc->helper_retaddr = ra;
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
o0 = ldq_le_p(haddr + 0);
o1 = ldq_le_p(haddr + 1);
oldv = int128_make128(o0, o1);
success = int128_eq(oldv, cmpv);
if (success) {
stq_le_p(haddr + 0, int128_getlo(newv));
stq_le_p(haddr + 1, int128_gethi(newv));
}
env->uc->helper_retaddr = 0;
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
oldv = int128_make128(o0, o1);
success = int128_eq(oldv, cmpv);
if (success) {
helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
}
#endif
}
return !success;
}
uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
uint64_t new_lo, uint64_t new_hi)
{
uintptr_t ra = GETPC();
Int128 oldv, cmpv, newv;
bool success;
cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
newv = int128_make128(new_lo, new_hi);
if (env->uc->parallel_cpus) {
#ifndef CONFIG_ATOMIC128
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
success = int128_eq(oldv, cmpv);
#endif
} else {
uint64_t o0, o1;
#ifdef CONFIG_USER_ONLY
/* ??? Enforce alignment. */
uint64_t *haddr = g2h(addr);
env->uc->helper_retaddr = ra;
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
o1 = ldq_be_p(haddr + 0);
o0 = ldq_be_p(haddr + 1);
oldv = int128_make128(o0, o1);
success = int128_eq(oldv, cmpv);
if (success) {
stq_be_p(haddr + 0, int128_gethi(newv));
stq_be_p(haddr + 1, int128_getlo(newv));
}
env->uc->helper_retaddr = 0;
target-arm: emulate aarch64's LL/SC using cmpxchg helpers Emulating LL/SC with cmpxchg is not correct, since it can suffer from the ABA problem. Portable parallel code, however, is written assuming only cmpxchg--and not LL/SC--is available. This means that in practice emulating LL/SC with cmpxchg is a viable alternative. The appended emulates LL/SC pairs in aarch64 with cmpxchg helpers. This works in both user and system mode. In usermode, it avoids pausing all other CPUs to perform the LL/SC pair. The subsequent performance and scalability improvement is significant, as the plots below show. They plot the throughput of atomic_add-bench compiled for ARM and executed on a 64-core x86 machine. Hi-res plots: http://imgur.com/a/JVc8Y atomic_add-bench: 1000000 ops/thread, [0,1] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ || | 14 ++ ++ | | | 12 ++| ++ | | | 10 ++++ ++ 8 ++E ++ |+++ | 6 ++ | ++ | | | 4 ++ | ++ | | | 2 +H++E+--- ++ + | +E++----+E+---+--+E+----++E+------+E+------+E++----+E+---+--+E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,2] range 18 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 16 ++master +-H--+ ++ | | | 14 ++E ++ | | | 12 ++| ++ |+++ | 10 ++ | ++ 8 ++ | ++ | | | 6 ++ | ++ | | | 4 ++ | ++ | +E+--- | 2 +H+ +E+-----+++ +++ +++ ---+E+-----+E+------+++ +++ + +E+---+--+E+----++E+------+E+--- ++++ +++ + +E| 0 ++H-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,128] range 70 ++---------+----------+---------+----------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 60 ++master +-H--+ +++ ---+E+-----+E+------+E+ | +E+------E-------+E+--- | | --- +++ | 50 ++ +++--- ++ | -+E+ | 40 ++ +++---- ++ | E- | | --| | 30 ++ -- +++ ++ | +E+ | 20 ++E+ ++ |E+ | | | 10 ++ ++ + + + + + + + | 0 +HH-H----H-+-----H----+---------+----------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads atomic_add-bench: 1000000 ops/thread, [0,1024] range 160 ++---------+---------+----------+---------+----------+----------+---++ +cmpxchg +-E--+ + + + + + | 140 ++master +-H--+ +++ +++ | -+E+-----+E+-------E| 120 ++ +++ ---- +++ | +++ ----E-- | 100 ++ --E--- +++ ++ | +++ ---- +++ | 80 ++ --E-- ++ | ---- +++ | | -+E+ | 60 ++ ---- +++ ++ | +E+- | 40 ++ -- ++ | +E+ | 20 +EE+ ++ +++ + + + + + + | 0 +HH-H---H--+-----H---+----------+---------+----------+----------+---++ 0 10 20 30 40 50 60 Number of threads Backports commit 1dd089d0eec060dcd8478735114d98421d414805 from qemu
2018-02-28 05:13:19 +00:00
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
oldv = int128_make128(o0, o1);
success = int128_eq(oldv, cmpv);
if (success) {
helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
}
#endif
}
return !success;
}
/*
* AdvSIMD half-precision
*/
#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
#define ADVSIMD_HALFOP(name) \
float16 ADVSIMD_HELPER(name, h)(float16 a, float16 b, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return float16_ ## name(a, b, fpst); \
}
ADVSIMD_HALFOP(add)
ADVSIMD_HALFOP(sub)
ADVSIMD_HALFOP(mul)
ADVSIMD_HALFOP(div)
ADVSIMD_HALFOP(min)
ADVSIMD_HALFOP(max)
ADVSIMD_HALFOP(minnum)
ADVSIMD_HALFOP(maxnum)
#define ADVSIMD_TWOHALFOP(name) \
uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
{ \
float16 a1, a2, b1, b2; \
uint32_t r1, r2; \
float_status *fpst = fpstp; \
a1 = extract32(two_a, 0, 16); \
a2 = extract32(two_a, 16, 16); \
b1 = extract32(two_b, 0, 16); \
b2 = extract32(two_b, 16, 16); \
r1 = float16_ ## name(a1, b1, fpst); \
r2 = float16_ ## name(a2, b2, fpst); \
return deposit32(r1, 16, 16, r2); \
}
ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)
ADVSIMD_TWOHALFOP(mul)
ADVSIMD_TWOHALFOP(div)
ADVSIMD_TWOHALFOP(min)
ADVSIMD_TWOHALFOP(max)
ADVSIMD_TWOHALFOP(minnum)
ADVSIMD_TWOHALFOP(maxnum)
/* Data processing - scalar floating-point and advanced SIMD */
static float16 float16_mulx(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float16_squash_input_denormal(a, fpst);
b = float16_squash_input_denormal(b, fpst);
if ((float16_is_zero(a) && float16_is_infinity(b)) ||
(float16_is_infinity(a) && float16_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float16((1U << 14) |
((float16_val(a) ^ float16_val(b)) & (1U << 15)));
}
return float16_mul(a, b, fpst);
}
ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)
/* fused multiply-accumulate */
float16 HELPER(advsimd_muladdh)(float16 a, float16 b, float16 c, void *fpstp)
{
float_status *fpst = fpstp;
return float16_muladd(a, b, c, 0, fpst);
}
uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
uint32_t two_c, void *fpstp)
{
float_status *fpst = fpstp;
float16 a1, a2, b1, b2, c1, c2;
uint32_t r1, r2;
a1 = extract32(two_a, 0, 16);
a2 = extract32(two_a, 16, 16);
b1 = extract32(two_b, 0, 16);
b2 = extract32(two_b, 16, 16);
c1 = extract32(two_c, 0, 16);
c2 = extract32(two_c, 16, 16);
r1 = float16_muladd(a1, b1, c1, 0, fpst);
r2 = float16_muladd(a2, b2, c2, 0, fpst);
return deposit32(r1, 16, 16, r2);
}
/*
* Floating point comparisons produce an integer result. Softfloat
* routines return float_relation types which we convert to the 0/-1
* Neon requires.
*/
#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
uint32_t HELPER(advsimd_ceq_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
int compare = float16_compare_quiet(a, b, fpst);
return ADVSIMD_CMPRES(compare == float_relation_equal);
}
uint32_t HELPER(advsimd_cge_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
int compare = float16_compare(a, b, fpst);
return ADVSIMD_CMPRES(compare == float_relation_greater ||
compare == float_relation_equal);
}
uint32_t HELPER(advsimd_cgt_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
int compare = float16_compare(a, b, fpst);
return ADVSIMD_CMPRES(compare == float_relation_greater);
}
uint32_t HELPER(advsimd_acge_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
float16 f0 = float16_abs(a);
float16 f1 = float16_abs(b);
int compare = float16_compare(f0, f1, fpst);
return ADVSIMD_CMPRES(compare == float_relation_greater ||
compare == float_relation_equal);
}
uint32_t HELPER(advsimd_acgt_f16)(float16 a, float16 b, void *fpstp)
{
float_status *fpst = fpstp;
float16 f0 = float16_abs(a);
float16 f1 = float16_abs(b);
int compare = float16_compare(f0, f1, fpst);
return ADVSIMD_CMPRES(compare == float_relation_greater);
}
/* round to integral */
float16 HELPER(advsimd_rinth_exact)(float16 x, void *fp_status)
{
return float16_round_to_int(x, fp_status);
}
float16 HELPER(advsimd_rinth)(float16 x, void *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float16 ret;
ret = float16_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
/*
* Half-precision floating point conversion functions
*
* There are a multitude of conversion functions with various
* different rounding modes. This is dealt with by the calling code
* setting the mode appropriately before calling the helper.
*/
uint32_t HELPER(advsimd_f16tosinth)(float16 a, void *fpstp)
{
float_status *fpst = fpstp;
/* Invalid if we are passed a NaN */
if (float16_is_any_nan(a)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_int16(a, fpst);
}
uint32_t HELPER(advsimd_f16touinth)(float16 a, void *fpstp)
{
float_status *fpst = fpstp;
/* Invalid if we are passed a NaN */
if (float16_is_any_nan(a)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_uint16(a, fpst);
}