include/qemu/atomic.h: default to __atomic functions

The __atomic primitives have been available since GCC 4.7 and provide
a richer interface for describing memory ordering requirements. As a
bonus by using the primitives instead of hand-rolled functions we can
use tools such as the ThreadSanitizer which need the use of well
defined APIs for its analysis.

If we have __ATOMIC defines we exclusively use the __atomic primitives
for all our atomic access. Otherwise we fall back to the mixture of
__sync and hand-rolled barrier cases.

Backports commit a0aa44b488b3601415d55041e4619aef5f3a4ba8 from qemu
This commit is contained in:
Alex Bennée 2018-02-22 16:10:54 -05:00 committed by Lioncash
parent 4e7259a49b
commit 171d267209
No known key found for this signature in database
GPG key ID: 4E3C3CC1031BA9C7

View file

@ -8,6 +8,8 @@
* This work is licensed under the terms of the GNU GPL, version 2 or later. * This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory. * See the COPYING file in the top-level directory.
* *
* See docs/atomics.txt for discussion about the guarantees each
* atomic primitive is meant to provide.
*/ */
#ifndef __QEMU_ATOMIC_H #ifndef __QEMU_ATOMIC_H
@ -15,8 +17,6 @@
#include "qemu/compiler.h" #include "qemu/compiler.h"
/* For C11 atomic ops */
/* Compiler barrier */ /* Compiler barrier */
#ifdef _MSC_VER #ifdef _MSC_VER
void _ReadWriteBarrier(void); void _ReadWriteBarrier(void);
@ -26,7 +26,126 @@ void _ReadWriteBarrier(void);
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; }) #define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
#endif #endif
#ifndef __ATOMIC_RELAXED #ifdef __ATOMIC_RELAXED
/* For C11 atomic ops */
/* Manual memory barriers
*
*__atomic_thread_fence does not include a compiler barrier; instead,
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
* the compiler is free to reorder stores on each side of the barrier.
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
*/
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); barrier(); })
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
/* Weak atomic operations prevent the compiler moving other
* loads/stores past the atomic operation load/store. However there is
* no explicit memory barrier for the processor.
*/
#define atomic_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
_val; \
})
#define atomic_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
} while(0)
/* Atomic RCU operations imply weak memory barriers */
#define atomic_rcu_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
_val; \
})
#define atomic_rcu_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
} while(0)
/* atomic_mb_read/set semantics map Java volatile variables. They are
* less expensive on some platforms (notably POWER & ARMv7) than fully
* sequentially consistent operations.
*
* As long as they are used as paired operations they are safe to
* use. See docs/atomic.txt for more discussion.
*/
#if defined(_ARCH_PPC)
#define atomic_mb_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
smp_rmb(); \
_val; \
})
#define atomic_mb_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
smp_wmb(); \
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
smp_mb(); \
} while(0)
#else
#define atomic_mb_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \
_val; \
})
#define atomic_mb_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_SEQ_CST); \
} while(0)
#endif
/* All the remaining operations are fully sequentially consistent */
#define atomic_xchg(ptr, i) ({ \
typeof(*ptr) _new = (i), _old; \
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
_old; \
})
/* Returns the eventual value, failed or not */
#define atomic_cmpxchg(ptr, old, new) \
({ \
typeof(*ptr) _old = (old), _new = (new); \
__atomic_compare_exchange(ptr, &_old, &_new, false, \
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
_old; \
})
/* Provide shorter names for GCC atomic builtins, return old value */
#define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
/* And even shorter names that return void. */
#define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
#else /* __ATOMIC_RELAXED */
/* /*
* We use GCC builtin if it's available, as that can use mfence on * We use GCC builtin if it's available, as that can use mfence on
@ -101,8 +220,6 @@ void _ReadWriteBarrier(void);
#endif /* _ARCH_PPC */ #endif /* _ARCH_PPC */
#endif /* C11 atomics */
/* /*
* For (host) platforms we don't have explicit barrier definitions * For (host) platforms we don't have explicit barrier definitions
* for, we use the gcc __sync_synchronize() primitive to generate a * for, we use the gcc __sync_synchronize() primitive to generate a
@ -114,42 +231,62 @@ void _ReadWriteBarrier(void);
#endif #endif
#ifndef smp_wmb #ifndef smp_wmb
#ifdef __ATOMIC_RELEASE
/* __atomic_thread_fence does not include a compiler barrier; instead,
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
* the compiler is free to reorder stores on each side of the barrier.
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
*/
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
#else
#define smp_wmb() __sync_synchronize() #define smp_wmb() __sync_synchronize()
#endif #endif
#endif
#ifndef smp_rmb #ifndef smp_rmb
#ifdef __ATOMIC_ACQUIRE
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
#else
#define smp_rmb() __sync_synchronize() #define smp_rmb() __sync_synchronize()
#endif #endif
#endif
#ifndef smp_read_barrier_depends #ifndef smp_read_barrier_depends
#ifdef __ATOMIC_CONSUME
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
#else
#define smp_read_barrier_depends() barrier() #define smp_read_barrier_depends() barrier()
#endif #endif
#endif
#ifndef atomic_read /* These will only be atomic if the processor does the fetch or store
* in a single issue memory operation
*/
#define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr)) #define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
#endif
#ifndef atomic_set
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i)) #define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
#endif
/**
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
* into a RCU read-side critical section. The pointer can later be safely
* dereferenced within the critical section.
*
* This ensures that the pointer copy is invariant thorough the whole critical
* section.
*
* Inserts memory barriers on architectures that require them (currently only
* Alpha) and documents which pointers are protected by RCU.
*
* atomic_rcu_read also includes a compiler barrier to ensure that
* value-speculative optimizations (e.g. VSS: Value Speculation
* Scheduling) does not perform the data read before the pointer read
* by speculating the value of the pointer.
*
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
*/
#define atomic_rcu_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_read_barrier_depends(); \
_val; \
})
/**
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
* meant to be read by RCU read-side critical sections.
*
* Documents which pointers will be dereferenced by RCU read-side critical
* sections and adds the required memory barriers on architectures requiring
* them. It also makes sure the compiler does not reorder code initializing the
* data structure before its publication.
*
* Should match atomic_rcu_read().
*/
#define atomic_rcu_set(ptr, i) do { \
smp_wmb(); \
atomic_set(ptr, i); \
} while (0)
/* These have the same semantics as Java volatile variables. /* These have the same semantics as Java volatile variables.
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html: * See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
@ -173,31 +310,21 @@ void _ReadWriteBarrier(void);
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough. * (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
* Just always use the barriers manually by the rules above. * Just always use the barriers manually by the rules above.
*/ */
#ifndef atomic_mb_read
#define atomic_mb_read(ptr) ({ \ #define atomic_mb_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \ typeof(*ptr) _val = atomic_read(ptr); \
smp_rmb(); \ smp_rmb(); \
_val; \ _val; \
}) })
#endif
#ifndef atomic_mb_set
#define atomic_mb_set(ptr, i) do { \ #define atomic_mb_set(ptr, i) do { \
smp_wmb(); \ smp_wmb(); \
atomic_set(ptr, i); \ atomic_set(ptr, i); \
smp_mb(); \ smp_mb(); \
} while (0) } while (0)
#endif
#ifndef atomic_xchg #ifndef atomic_xchg
#if defined(__clang__) #if defined(__clang__)
#define atomic_xchg(ptr, i) __sync_swap(ptr, i) #define atomic_xchg(ptr, i) __sync_swap(ptr, i)
#elif defined(__ATOMIC_SEQ_CST)
#define atomic_xchg(ptr, i) ({ \
typeof(*ptr) _new = (i), _old; \
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
_old; \
})
#else #else
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */ /* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i)) #define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
@ -237,4 +364,5 @@ void _ReadWriteBarrier(void);
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n)) #define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
#endif #endif
#endif #endif /* __ATOMIC_RELAXED */
#endif /* __QEMU_ATOMIC_H */