target/arm: Move helper_dc_zva to helper-a64.c

This is an aarch64-only function. Move it out of the shared file.
This patch is code movement only.

Backports commit 7b182eb2467af6c47c9c77c64bbbeed8ed53c330 from qemu
This commit is contained in:
Richard Henderson 2020-04-30 06:12:21 -04:00 committed by Lioncash
parent a22a2a8b71
commit 3cb68bc44e
4 changed files with 102 additions and 103 deletions

View file

@ -18,6 +18,7 @@
*/ */
#include "qemu/osdep.h" #include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h" #include "cpu.h"
#include "exec/helper-proto.h" #include "exec/helper-proto.h"
#include "qemu/host-utils.h" #include "qemu/host-utils.h"
@ -1085,4 +1086,104 @@ uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
return float16_sqrt(a, s); return float16_sqrt(a, s);
} }
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
/*
* Implement DC ZVA, which zeroes a fixed-length block of memory.
* Note that we do not implement the (architecturally mandated)
* alignment fault for attempts to use this on Device memory
* (which matches the usual QEMU behaviour of not implementing either
* alignment faults or any memory attribute handling).
*/
ARMCPU *cpu = env_archcpu(env);
uint64_t blocklen = 4 << cpu->dcz_blocksize;
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
#ifndef CONFIG_USER_ONLY
{
/*
* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
* the block size so we might have to do more than one TLB lookup.
* We know that in fact for any v8 CPU the page size is at least 4K
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
* 1K as an artefact of legacy v5 subpage support being present in the
* same QEMU executable. So in practice the hostaddr[] array has
* two entries, given the current setting of TARGET_PAGE_BITS_MIN.
*/
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
// msvc doesnt allow non-constant array sizes, so we work out the size it would be
// TARGET_PAGE_SIZE is 1024
// blocklen is 64
// maxidx = (blocklen+TARGET_PAGE_SIZE-1) / TARGET_PAGE_SIZE
// = (64+1024-1) / 1024
// = 1
#ifdef _MSC_VER
void *hostaddr[1];
#else
void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
#endif
int try, i;
unsigned mmu_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
assert(maxidx <= ARRAY_SIZE(hostaddr));
for (try = 0; try < 2; try++) {
for (i = 0; i < maxidx; i++) {
hostaddr[i] = tlb_vaddr_to_host(env,
vaddr + TARGET_PAGE_SIZE * i,
1, mmu_idx);
if (!hostaddr[i]) {
break;
}
}
if (i == maxidx) {
/*
* If it's all in the TLB it's fair game for just writing to;
* we know we don't need to update dirty status, etc.
*/
for (i = 0; i < maxidx - 1; i++) {
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
}
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
return;
}
/*
* OK, try a store and see if we can populate the tlb. This
* might cause an exception if the memory isn't writable,
* in which case we will longjmp out of here. We must for
* this purpose use the actual register value passed to us
* so that we get the fault address right.
*/
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
/* Now we can populate the other TLB entries, if any */
for (i = 0; i < maxidx; i++) {
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
helper_ret_stb_mmu(env, va, 0, oi, GETPC());
}
}
}
/*
* Slow path (probably attempt to do this to an I/O device or
* similar, or clearing of a block of code we have translations
* cached for). Just do a series of byte writes as the architecture
* demands. It's not worth trying to use a cpu_physical_memory_map(),
* memset(), unmap() sequence here because:
* + we'd need to account for the blocksize being larger than a page
* + the direct-RAM access case is almost always going to be dealt
* with in the fastpath code above, so there's no speed benefit
* + we would have to deal with the map returning NULL because the
* bounce buffer was in use
*/
for (i = 0; i < blocklen; i++) {
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
}
}
#else
memset(g2h(vaddr), 0, blocklen);
#endif
}

View file

@ -90,6 +90,7 @@ DEF_HELPER_2(advsimd_f16touinth, i32, f16, ptr)
DEF_HELPER_2(sqrt_f16, f16, f16, ptr) DEF_HELPER_2(sqrt_f16, f16, f16, ptr)
DEF_HELPER_2(exception_return, void, env, i64) DEF_HELPER_2(exception_return, void, env, i64)
DEF_HELPER_2(dc_zva, void, env, i64)
DEF_HELPER_FLAGS_3(pacia, TCG_CALL_NO_WG, i64, env, i64, i64) DEF_HELPER_FLAGS_3(pacia, TCG_CALL_NO_WG, i64, env, i64, i64)
DEF_HELPER_FLAGS_3(pacib, TCG_CALL_NO_WG, i64, env, i64, i64) DEF_HELPER_FLAGS_3(pacib, TCG_CALL_NO_WG, i64, env, i64, i64)

View file

@ -556,7 +556,6 @@ DEF_HELPER_FLAGS_3(crypto_sm4ekey, TCG_CALL_NO_RWG, void, ptr, ptr, ptr)
DEF_HELPER_FLAGS_3(crc32_arm, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32) DEF_HELPER_FLAGS_3(crc32_arm, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32)
DEF_HELPER_FLAGS_3(crc32c, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32) DEF_HELPER_FLAGS_3(crc32c, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32)
DEF_HELPER_2(dc_zva, void, env, i64)
DEF_HELPER_FLAGS_5(gvec_qrdmlah_s16, TCG_CALL_NO_RWG, DEF_HELPER_FLAGS_5(gvec_qrdmlah_s16, TCG_CALL_NO_RWG,
void, ptr, ptr, ptr, ptr, i32) void, ptr, ptr, ptr, ptr, i32)

View file

@ -927,105 +927,3 @@ uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
return ((uint32_t)x >> shift) | (x << (32 - shift)); return ((uint32_t)x >> shift) | (x << (32 - shift));
} }
} }
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
/*
* Implement DC ZVA, which zeroes a fixed-length block of memory.
* Note that we do not implement the (architecturally mandated)
* alignment fault for attempts to use this on Device memory
* (which matches the usual QEMU behaviour of not implementing either
* alignment faults or any memory attribute handling).
*/
ARMCPU *cpu = env_archcpu(env);
uint64_t blocklen = 4 << cpu->dcz_blocksize;
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
#ifndef CONFIG_USER_ONLY
{
/*
* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
* the block size so we might have to do more than one TLB lookup.
* We know that in fact for any v8 CPU the page size is at least 4K
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
* 1K as an artefact of legacy v5 subpage support being present in the
* same QEMU executable. So in practice the hostaddr[] array has
* two entries, given the current setting of TARGET_PAGE_BITS_MIN.
*/
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
// msvc doesnt allow non-constant array sizes, so we work out the size it would be
// TARGET_PAGE_SIZE is 1024
// blocklen is 64
// maxidx = (blocklen+TARGET_PAGE_SIZE-1) / TARGET_PAGE_SIZE
// = (64+1024-1) / 1024
// = 1
#ifdef _MSC_VER
void *hostaddr[1];
#else
void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
#endif
int try, i;
unsigned mmu_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
assert(maxidx <= ARRAY_SIZE(hostaddr));
for (try = 0; try < 2; try++) {
for (i = 0; i < maxidx; i++) {
hostaddr[i] = tlb_vaddr_to_host(env,
vaddr + TARGET_PAGE_SIZE * i,
1, mmu_idx);
if (!hostaddr[i]) {
break;
}
}
if (i == maxidx) {
/*
* If it's all in the TLB it's fair game for just writing to;
* we know we don't need to update dirty status, etc.
*/
for (i = 0; i < maxidx - 1; i++) {
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
}
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
return;
}
/*
* OK, try a store and see if we can populate the tlb. This
* might cause an exception if the memory isn't writable,
* in which case we will longjmp out of here. We must for
* this purpose use the actual register value passed to us
* so that we get the fault address right.
*/
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
/* Now we can populate the other TLB entries, if any */
for (i = 0; i < maxidx; i++) {
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
helper_ret_stb_mmu(env, va, 0, oi, GETPC());
}
}
}
/*
* Slow path (probably attempt to do this to an I/O device or
* similar, or clearing of a block of code we have translations
* cached for). Just do a series of byte writes as the architecture
* demands. It's not worth trying to use a cpu_physical_memory_map(),
* memset(), unmap() sequence here because:
* + we'd need to account for the blocksize being larger than a page
* + the direct-RAM access case is almost always going to be dealt
* with in the fastpath code above, so there's no speed benefit
* + we would have to deal with the map returning NULL because the
* bounce buffer was in use
*/
for (i = 0; i < blocklen; i++) {
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
}
}
#else
memset(g2h(vaddr), 0, blocklen);
#endif
}