mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-23 14:15:39 +00:00
softfloat: Revert and reimplement remaining portions of 75d62a5856 and 3430b0be36f
Revert the remaining portions of commits 75d62a5856 and 3430b0be36f which are under a SoftFloat-2b license, ie the functions uint64_to_float32() and uint64_to_float64(). (The float64_to_uint64() and float64_to_uint64_round_to_zero() functions were completely rewritten in commits fb3ea83aa and 0a87a3107d so can stay.) Reimplement from scratch the uint64_to_float64() and uint64_to_float32() conversion functions. [This is a mechanical squashing together of two separate "revert" and "reimplement" patches.] Backports commit 6bb8e0f130bd4aecfe835a0caa94390fa2235fde from qemu
This commit is contained in:
parent
a9079657e8
commit
5ad42fb01b
|
@ -1302,27 +1302,6 @@ float32 int64_to_float32(int64_t a STATUS_PARAM)
|
|||
|
||||
}
|
||||
|
||||
float32 uint64_to_float32(uint64_t a STATUS_PARAM)
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
if ( a == 0 ) return float32_zero;
|
||||
shiftCount = countLeadingZeros64( a ) - 40;
|
||||
if ( 0 <= shiftCount ) {
|
||||
return packFloat32(0, 0x95 - shiftCount, (uint32_t)(a<<shiftCount));
|
||||
}
|
||||
else {
|
||||
shiftCount += 7;
|
||||
if ( shiftCount < 0 ) {
|
||||
shift64RightJamming( a, - shiftCount, &a );
|
||||
}
|
||||
else {
|
||||
a <<= shiftCount;
|
||||
}
|
||||
return roundAndPackFloat32(0, 0x9C - shiftCount, (uint32_t)a STATUS_VAR);
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit two's complement integer `a'
|
||||
| to the double-precision floating-point format. The conversion is performed
|
||||
|
@ -1342,20 +1321,6 @@ float64 int64_to_float64(int64_t a STATUS_PARAM)
|
|||
|
||||
}
|
||||
|
||||
float64 uint64_to_float64(uint64_t a STATUS_PARAM)
|
||||
{
|
||||
int exp = 0x43C;
|
||||
|
||||
if (a == 0) {
|
||||
return float64_zero;
|
||||
}
|
||||
if ((int64_t)a < 0) {
|
||||
shift64RightJamming(a, 1, &a);
|
||||
exp += 1;
|
||||
}
|
||||
return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit two's complement integer `a'
|
||||
| to the extended double-precision floating-point format. The conversion
|
||||
|
@ -1410,6 +1375,71 @@ float128 int64_to_float128(int64_t a STATUS_PARAM)
|
|||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit unsigned integer `a'
|
||||
| to the single-precision floating-point format. The conversion is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 uint64_to_float32(uint64_t a STATUS_PARAM)
|
||||
{
|
||||
int shiftcount;
|
||||
|
||||
if (a == 0) {
|
||||
return float32_zero;
|
||||
}
|
||||
|
||||
/* Determine (left) shift needed to put first set bit into bit posn 23
|
||||
* (since packFloat32() expects the binary point between bits 23 and 22);
|
||||
* this is the fast case for smallish numbers.
|
||||
*/
|
||||
shiftcount = countLeadingZeros64(a) - 40;
|
||||
if (shiftcount >= 0) {
|
||||
return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
|
||||
}
|
||||
/* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
|
||||
* expects the binary point between bits 30 and 29, hence the + 7.
|
||||
*/
|
||||
shiftcount += 7;
|
||||
if (shiftcount < 0) {
|
||||
shift64RightJamming(a, -shiftcount, &a);
|
||||
} else {
|
||||
a <<= shiftcount;
|
||||
}
|
||||
|
||||
return roundAndPackFloat32(0, 0x9c - shiftcount, a STATUS_VAR);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit unsigned integer `a'
|
||||
| to the double-precision floating-point format. The conversion is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 uint64_to_float64(uint64_t a STATUS_PARAM)
|
||||
{
|
||||
int exp = 0x43C;
|
||||
int shiftcount;
|
||||
|
||||
if (a == 0) {
|
||||
return float64_zero;
|
||||
}
|
||||
|
||||
shiftcount = countLeadingZeros64(a) - 1;
|
||||
if (shiftcount < 0) {
|
||||
shift64RightJamming(a, -shiftcount, &a);
|
||||
} else {
|
||||
a <<= shiftcount;
|
||||
}
|
||||
return roundAndPackFloat64(0, exp - shiftcount, a STATUS_VAR);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the 64-bit unsigned integer `a'
|
||||
| to the quadruple-precision floating-point format. The conversion is performed
|
||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float128 uint64_to_float128(uint64_t a STATUS_PARAM)
|
||||
{
|
||||
if (a == 0) {
|
||||
|
|
|
@ -278,11 +278,11 @@ float64 uint32_to_float64(uint32_t STATUS_PARAM);
|
|||
floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
|
||||
float128 int32_to_float128(int32_t STATUS_PARAM);
|
||||
float32 int64_to_float32(int64_t STATUS_PARAM);
|
||||
float32 uint64_to_float32(uint64_t STATUS_PARAM);
|
||||
float64 int64_to_float64(int64_t STATUS_PARAM);
|
||||
float64 uint64_to_float64(uint64_t STATUS_PARAM);
|
||||
floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
|
||||
float128 int64_to_float128(int64_t STATUS_PARAM);
|
||||
float32 uint64_to_float32(uint64_t STATUS_PARAM);
|
||||
float64 uint64_to_float64(uint64_t STATUS_PARAM);
|
||||
float128 uint64_to_float128(uint64_t STATUS_PARAM);
|
||||
|
||||
/* We provide the int16 versions for symmetry of API with float-to-int */
|
||||
|
|
Loading…
Reference in a new issue